Проекты для avr studio 5. От Arduino и wiring к AVR Studio и чистому СИ. Ключевые особенности и функции

AVR Studio 4 - новая профессиональная интегрированная среда разработки (Integrated Development Environment - IDE), предназначенная для написания и отладки прикладных программ для AVR микропроцессоров в среде Windows 9x/NT/2000. AVR Studio 4 содержит ассемблер и симулятор. Также IDE поддерживает такие средства разработки для AVR как: ICE50, ICE40, JTAGICE, ICE200, STK500/501/502 и AVRISP. В ближайшие месяцы будет расширен список поддерживаемых AVR Studio 4 микроконтроллеров и средств разработки. Обо всех обновлениях можно будет узнать на интернет сайте.

AVR Studio поддерживает COFF как формат выходных данных для символьной отладки. Другие программные средства третьих фирм также могут быть сконфигурированы для работы с AVR Studio.

Окно исходного текста программ

Ключевое окно в AVR Studio это окно исходного текста программы. Когда объектный файл открыт, автоматически создается окно исходного текста программ. В окне отображается код, который выполняется в отладочном окружении (эмуляторе или программном симуляторе) а текстовый маркер всегда находится на строке, которая будет выполнена в следующем цикле.

Выполнение программ и пошаговый режим

Пользователь может выполнять программу полностью в пошаговом режиме, трассируя блоки функций, или выполняя программу до места, где стоит курсор. В дополнение можно определять неограниченное число точек останова, каждая из которых может быть включена или выключена. Точки останова сохраняются между сессиями работы.

Просмотр регистров

В окне исходного текста программы выводится информация о процессе выполнения программы. В дополнение, AVR Studio имеет много других окон, которые позволяют управлять и отображать информацию о любом элементе микроконтроллера.

Список доступных окон:

  • Watch window: Окно показывает значения определенных символов. В этом окне пользователь может просматривать значения и адреса переменных.
  • Trace window: Окно показывает хронологию программы, выполняемой в настоящее время.
  • Register window: Окно показывает содержимое регистров. Регистры можно изменять во время остановки программы.
  • Memory windows: Окна показывают содержимое памяти программ, данных, портов ввода/вывода и энергонезависимого ПЗУ. Память можно просматривать в HEX, двоичном или десятичном форматах. Содержимое памяти можно изменять во время остановки программы.
  • I/O window: Показывает содержимое различных регистров ввода/вывода:
  • EEPROM
  • I/O порты
  • Таймеры
  • и т.д.
  • Message window: Окно показывает сообщения от AVR Studio.
  • Processor window: В окне отображается важная информация о ресурсах микроконтроллера, включая программный счетчик, указатель стека, регистр статуса и счетчик цикла. Эти параметры могут модифицироваться во время остановки программы.

Настройки рабочего окружения сохраняются при выходе. При первом запуске требуется настроить окна для управления и вывода необходимой информации. Во время следующей загрузки настройки автоматически восстанавливаются.

В AVR Studio включена поддержка отладочных средств фирмы Atmel:

  • Внутрисхемный эмулятор Atmel ICEPRO
  • Внутрисхемный эмулятор Atmel MegaICE
  • Внутрисхемный эмулятор Atmel AVRICE
  • Внутрисхемный эмулятор Atmel ICE200
  • Внутрисхемный эмулятор Atmel AsicICE
  • Внутрисхемный эмулятор Atmel ICE10
  • Внутрисхемный эмулятор Atmel ICE30

С AVR Studio также совместимы любые программаторы и отладочные средства, которые поддерживают микроконтроллеры фирмы Atmel.

Программное обеспечение:

AVR Studio 4.12 Service Pack 4 (сентябрь 2006)
Очередное обновление популярной интегрированной среды для проектирования со встроенным ассемблером и симулятором. Четвертый пакет обновления SP4 наследовал все новые возможности предыдущих обновлений SP1, SP2 и SP3. Обновлены программа, прошивка, руководство пользователя и список поддерживаемых микроконтроллеров у AVR Dragon. Также в пакет входят новые прошивки для отладочных средств JTAGICE MKII и STK500. Включена поддержка новых типов микроконтроллеров, в т.ч.: ATmega644P, ATmega329P, ATmega3290P, ATmega325P, ATmega3250P. Устранены ошибки в работе симулятора, ассемблера и JTAGICEmkII. Обратите внимание, что AVR Studio 4 SP3 и SP4 не могут работать в составе операционной системы Windows 95.
Интегрированная среда для проектирования AVR Studio 4.12 (45Mb Ноябрь 2005 г.)
AVR Studio 4.11 Service Pack 3 (27 MB, updated Май 2005 г.)
Интегрированная среда для проектирования AVR Studio 4.11 (41Mb Январь 2005 г.)
Интегрированная среда для проектирования AVR Studio 4.10 (30Mb Сентябрь 2004 г.)
Новика! AVR Studio 4.10 с обновленным ассемблером (версия 2 beta-5 (AVRASM2)), старая версия ассемблера AVRASM1 подключена по умолчанию. Обновлен симулятор AVR Studio, который теперь также поддерживает новые микроконтроллеры AVR ATmega165, ATmega649, ATmega325, ATmega3250, ATmega3290. Обновлена программная поддержка JTAGICE2, ICE50, STK500, AVRISP, JTAGICE2. Обновлен USB WinDriver с версии 6.03 на версию 6.22.
Интегрированная среда для проектирования AVR Studio 4.09 (28Mb апрель 2004 г.)
В AVR Studio 4.09 добавлена поддержка JTAGICE mkII. В сочетании с новой версией AVR Studio JTAGICE mkII является завершенным инструментальным средством для выполнения внутрикристальной отладки всех 8-разр. AVR RISC микроконтроллеров, содержащих для этой цели интерфейс JTAG или однопроводной интерфейс debugWIRE. В данную версию также добавлена поддержка новых микроконтроллеров, а также внесено несколько улучшений.
AVR Studio 4.08 SP1 (8 Мбайт, обновлено 2/04)
Это служебный выпуск AVR Studio 4, который требует предварительной инсталляции AVR Studio версии 4.08. Он добавляет поддержку симуляции и эмуляции (ICE50) нового семейства AVR -микроконтроллеров ATMega48. Полная информация об особенностях данного выпуска приведена во включенной документации, которая доступна из меню Help в AVR Studio.
AVR Studio 4.08 (26 Мбайт, обновлено 12/03)
AVR Studio 4.08 - интегрированная среда разработки (IDE), предназначенная для написания и отладки прикладных программ для AVR микропроцессоров в среде Windows 9x/NT/2000. Обновлены трассировщик, монитор стека и поддержка усовершенствованного USB для ICE40/50. Кроме того, имеется еще ряд дополнений.
12756 Kb AVR Studio V4.0
7163 Kb AVR Studio V3.56
1.31 Mb AVR LCD Visualizer версии 1.0 (обновлено 02/2004), общедоступная бета- версия.
Создание и изменение ЖКИ при помощи редактора, отладка и визуализация при помощи дополнений к программе AVR Studio. Обновление в реальном времени при работе с ICE50 и симулятором. Поддерживает ATmega169. Для установки требует наличие IDE AVR Studio версии 4.07 или более новой. Перед установкой необходимо удалить старые ЖКИ дополнения к программе.


Здравствуйте.

Эта статья придётся по душе тем, кто считает, что «вырос» из ардуино и готов шагнуть в мир «серьёзного» программирования микроконтроллеров. Помимо того, что вы «прокачаете скил» программиста, у вас появится возможность выбирать любой микроконтроллер для своих проектов, и конечно же вы оцените скорость работы программ и размер занимаемой ими памяти.

Описано будет всё (для    ) , от начала и до конца, - установка и подготовка необходимого программного обеспечения, сборка простейшего программатора «Громова» (не стоит пугаться, там всего три диода и семь резисторов) , прошивка МК и написание кода в AVR Studio. Весь процесс будет сопровождаться иллюстрациями и примерами.

Сразу оговорюсь, компьютер должен быть оснащен СОМ-портом (переходник USB to COM плохо работает). Если у вашего компьютера сзади нет такого разъёма, то он наверняка есть на материнской плате (в виде штырьков), тогда всё решается вот таким «выбросом»

Увы, для владельцев ноутбуков без СОМа, статья представляет лишь академический интерес.

Итак начнём…

Что понадобится?

«Софт»


UniProf - универсальная программа для прошивки различных микроконтроллеров ATmega, простая и удобная, а главное, отлично работающая с нашим программатором. Автор - российский разработчик Михаил Николаев .

Конечно, прошивать МК можно и из AVR Studio, но для этого нужен специальный программатор. Поэтому писать код мы будем в студии, а полученные hex-файлы прошивать UniProf`ом посредством нашего самодельного программатора. Помимо этого будет описан способ прошивки из командной строки.

Пользователям Linux придётся воспользоваться либо виртуалкой, либо Wine. У меня с вайном не получилось, ни в какую не видится порт, а с виртуалкой я не пробовал.

  В Wine работает без нареканий (Debian 8.5, wine1.6) .

Весь софт бесплатный.

«Железо»

Эксперименты будем ставить над Arduino pro mini с микросхемой ATmega328. Частота кварца (8/16Мгц) , равно как и напряжение (3.3/5v) , не имеют значения. (см. ниже)

В дальнейшем вы будете программировать различные МК фирмы Atmel, но для первого раза эта плата самое то. Она хороша тем, что практически, это голый контроллер с минимальной «обвязкой» и распаяннами пинами. Как раз то, что нужно.

О маркировках на микроконтроллерах

После названия идут цифры, которые, чаще всего, показывают объём памяти.

Буква после цифр указывает на параметры питающего напряжения.

Нет буквы - напряжение питания контроллера находится в пределах 4,5-5,5 вольт.
L - версии контроллеров, работающих на пониженном (Low) напряжении питания (2,7 - 5,5 вольт).
V - версии контроллеров, работающих на низком напряжении питания (1,8-5,5 вольт) .
U - версии контроллеров, работающих на сверхнизком напряжении питания (0,7-5,5 вольт) .
P - малопотребляющие версии (до 100 нА в режиме Power-down) .
A - уменьшен ток потребления, перекрывается весь диапазон тактовых частот всех версий, напряжение питания 1,8-5,5 вольт (в некоторых моделях, добавлены новые возможности и новые регистры. При этом сохранена полная совместимость с предыдущими версиями) .

Микроконтроллеры «А » и «не-А » обычно имеют одинаковую сигнатуру, что вызывает некоторые трудности, так как Fuse-bit’ы отличаются.

Примеры:

ATmega8 - объем памяти программ 8 килобайт, напряжение питания - 4,5-5,5 вольт.
ATmega8L - объем памяти программ 8 килобайт, напряжение питания - 2,7-5,5 вольт.
ATtiny43U - объем памяти 4 килобайта, модификация - 3, напряжение питания - 0,7-5,5 вольт.
ATtiny44А - объем памяти 4 килобайта, модификация - 4, уменьшенный ток потребления, напряжение питания 1,8-5,5 вольт.

Бывает так, что контроллер без буквы может иметь пониженное напряжение питания (1,7 или 1,8 вольт). Это надо уточнять в даташите.

ATtiny841 - объем памяти 8 килобайт, модификация - 41, напряжение питания - 1,7-5,5 вольт.

После дефиса указывается вариант исполнения микроконтроллера, состоящий из цифр, обозначающих максимальную частоту контроллера (при соответствующем напряжении питания) , и из букв, обозначающих вариант корпуса, температурный диапазон работы, и особенности изготовления.

Одна или две буквы идущие после частоты обозначают тип корпуса:

UniProf
Написать программу это пол дела, надо её ещё в контроллер как-то впихнуть. Вот и уделим этому побольше внимания.

Хорошо бы было, чтоб в вашу ардуину был залит стандартный Blink (с «завода» она с ним и поставляется).

Запускаем UniProf… Возможно выскочит такое окно:

Это связано с LPT-портом, так что просто нажмите ОК .

Следом откроется окно программы:

Если порт выбран не правильно, то появится окно с предложением…

Нажмите ОК и выберите нужный порт.

Если МК не определился автоматически, тогда появится окно с ручным выбором:

К сожалению в списке нету atmega328 , поэтому выбираем mega32 (у них одинаковый объём flash-памяти ) и жмём ОК .

После этого, вместо надписи unknown появится подключённый контроллер…

32K - это объём Флеш-памяти, а 1024 - объём EEPROM.

Теперь, если у вас всё как на картинке, тогда откройте справку   и внимательно ознакомьтесь с тем, что там написано. Автор был весьма лаконичен, так что много времени это не займёт. Кнопки пока не нажимайте.

Ознакомились? Отлично, теперь можем двигаться дальше. Уберите «галочку» возле EEPROM и увидите изменившийся интерфейс:

После снятия «галки» EEPROM, чтение и запись этой области памяти не производится.

Поскольку мы будем оперировать hex-файлами, то уберём «галочки» General и BIN , а так же установим «галочку» Тормоз! , это увеличит время чтения/записи, но зато повысит стабильность.

Процесс не быстрый так что придётся подождать. Внизу будет ползти синие квадратики и в правом нижнем углу отсчитываться циферки. За первый проход прочитается область PROGRAM, а за второй EEPROM.

У меня новая ардуина с зашитым в неё стандартным Blink`ом (при подключении программатора диод перестанет мигать) . Если у вас то же самое, то взору предстанет такая картина:

Справа мы видим что в EEPROM ничего нет, а слева, в PROGRAM, записанная программа (как я уже говорил, это Blink) . Теперь стрелочкой «вниз» прокрутите ползунок до того как данные закончаться…

… а теперь прокрутите до конца. Вы увидите ещё данные, - это ардуиновский bootloader.

Сейчас я предлагаю отвлечься от моей статьи и почитать про устройство МК вот , это сильно приумножит понимание материала. Написано всё очень хорошо и понятно. Ну, а как прочтёте - возвращайтесь обратно и продолжим...

Снимите «галочку» с EEPROM . Она нам особо то и не нужна, зато будет видно, что стоит «галочка» Тормоз!

Теперь давайте сохраним всё что прошито в контроллере, чтоб после экспериментов была возможность вернуть его в исходное состояние.

Нажмите кнопку   и сохраните прошивку назвав её как-нибудь типа - origProMini328.hex . Всё, теперь у вас есть бекап.

… и следом нажмите уже знакомую кнопку Read . После этого Вы увидите что все ячейки в PROGRAM пустые. Удалена не только программа, но и ардуиновский bootloader.
То есть теперь вы не сможете загружать скетчи традиционным методом. Потом, если захотите, легким мановением руки восстановите всё из бекапа.

Сейчас мы прошьём контроллер таким же «Blink`ом», только написаным в AVR Studio.

Вот так выглядит код:

#define F_CPU 16000000UL #include #include #define PIN_PB5 5 // PB5 (ардуина - D13) #define PIN_PB5_PORT PORTB #define PIN_PB5_DDR DDRB int main(void) { PIN_PB5_DDR = 1 << PIN_PB5; // устанавливаем PIN_PB5 (PB5 (ардуина - D13)) как ВЫХОД while(1) { PIN_PB5_PORT = 1 << PIN_PB5; _delay_ms(300); PIN_PB5_PORT = 0 << PIN_PB5; _delay_ms(300); } return 0; }
Если вы используете ардуину с кварцем на 8Мгц, то в этом нет ничего страшного, просто диод будет мигать в два раза реже.

А вот, сколько он занимает места:

AVRDude

Uniprof как и многие другие, похожие программы, являются лишь графической надстройкой над программой AVRDude (AVR Downloader-Uploader) , которая то и выполняет все выше описанные действия над микроконтроллером.
Поскольку AVRDude не имеет собственного графического интерфейса с ней нужно работать из командной строки. Кому-то это может показаться неудобным, однако всё как раз наоборот, работа из консоли просто великолепна. Удобство, проста и отсутствие привязки к какой либо ОС, ибо avrdude существует, наверно, для всего. Сейчас вы в этом убедитесь.

Для пользователей

Avrdude входит в состав AVR toolchain, поэтому установите его (предварительно установив AVR Studio) как написано в начале статьи.

Cd \
… перейдите в корень диска С .

Введя команду:

Если всё так, тогда avrdude готов к работе и можно продолжать.

Теперь нужно добавить наш программатор в конфигурационный файл avrdude (C:\Program Files (x86)\Atmel\AVR Tools\AVR Toolchain\bin\avrdude.conf ) . Откройте его в программе Notepad++ и после надписи «PROGRAMMER DEFINITIONS» добавьте вот такие строки:

Programmer id = "gromov"; desc = "serial port banging, reset=dtr sck=rts mosi=txd miso=cts"; type = serbb; reset = 4; sck = 7; mosi = 3; miso = 8; ;
Bit-banging .

Сохраните и закройте файл, он больше не нужен.

Вернитесь в терминал и дайте команду проверки связи МК с программатором:

Avrdude -n -c gromov -P com1 -p m328p
У вас может быть другой сом-порт.

Установите avrdude

Sudo apt install avrdude

Введя команду:

Вы должны увидеть справочную информацию.

Если всё так, тогда avrdude готов к работе.

Настройте порт:

Sudo stty 9600 ignbrk -brkint -icrnl -imaxbel -opost -isig -icanon -iexten -echo noflsh Это надо делать после каждого ребута компа, ну или в rc.local добавьте.

Где /dev/ttyS0 - это com1 , /dev/ttyS1 - com2 и т.д.
В дальнейшем, в командах я буду писать /dev/ttyS0 , у вас может быть /dev/ttyS1 и т.д.

Добавьте программатор в конфигурационный файл /etc/avrdude.conf

Sudo nano /etc/avrdude.conf

После надписи «PROGRAMMER DEFINITIONS» добавьте вот такие строки:

Programmer id = "gromov"; desc = "serial port banging, reset=dtr sck=rts mosi=txd miso=cts"; type = "serbb"; reset = 4; sck = 7; mosi = 3; miso = 8; ;
Программатор использует технологию Bit-banging .

Следите за тем, чтоб при копировании, кавычки оставались именно кавычками, а то они могут изменится (из-за разницы кодировок) и avrdude будет ругаться.

Сохраните и закройте файл.

Дайте команду проверки связи МК с программатором:

Sudo avrdude -n -c gromov -P /dev/ttyS0 -p m328p

Если связь есть, то ответ будет такой:

Здесь различия между операционными системами заканчиваются и команды продублированы.

Добавим к команде аргумент -v или -v -v (можно добавлять к любым командам) для вывода полной информации:

Avrdude -n -v -c gromov -P com1 -p m328p ###WIN###
sudo avrdude -n -v -c gromov -P /dev/ttyS0 -p m328p ###Linux###


Вывод avrdude, что в windows, что в linux одинаковый, поэтому далее скрины буду делать только в win.

Тут уже больше информации, например, видно какие установлены фьюзы. Здесь они выводятся в шестнадцатеричных (HEX) числах. Например hfuse 0xDA, в двоичной системе выглядит так - . То есть это те самые биты, которые выставляются «галочками» в графических интерфейсах.

Когда будете разбираться с фьюзами, помните, в микроконтроллерах ATmega фьюзы инвертированы. То есть 0 - это вкл ючено, а 1 - откл ючено. В онлайн-калькуляторах из-за этого возникают непонятки (см. ниже).

Прочитаем прошивку из области flash (то же самое, что и PROGRAM в uniprof) командой:

Avrdude -c gromov -P com1 -p m328p -U flash:r:readfl.txt:h ###WIN###
sudo avrdude -c gromov -P /dev/ttyS0 -p m328p -U flash:r:readfl.txt:h ###Linux###

В uniprof код показывался в программе, а здесь он будет записан в файл.

Прошивка считана и записана в файл readfl.txt . Буква h (hex) в конце, указывает на то, что данные надо записать в шестнадцатеричном формате. Если написать букву b (binary) , запишется в двоичной системе, а если r (raw) , то данные будут в «сыром» виде (крякозябры).

Отсюда и далее предполагается, что win-пользователи находятся в корне диска С (C:\) , а linux-юзеры работают из домашней папки, соответственно файлы будут сохраняться туда же (если не прописать иного пути) . Прошивки, которые будут заливаться в МК, должны лежать там же.

Для win файл будет лежать здесь C:\readfl.txt, а для linux, в /home/user/readfl.txt. Можете открыть этот файл и поглядеть.

Чтение EEPROM:

Avrdude -c gromov -P com1 -p m328p -U eeprom:r:reader.txt:h ###WIN###
sudo avrdude -c gromov -P /dev/ttyS0 -p m328p -U eeprom:r:reader.txt:h ###Linux###

Чтение flash и eeprom вместе:

Avrdude -c gromov -P com1 -p m328p -U flash:r:readfl.txt:h -U eeprom:r:reader.txt:h ###WIN###
sudo avrdude -c gromov -P /dev/ttyS0 -p m328p -U flash:r:readfl.txt:h -U eeprom:r:reader.txt:h ###Linux###

Стирание контроллера:

Avrdude -e -c gromov -P com1 -p m328p ###WIN###
sudo avrdude -e -c gromov -P /dev/ttyS0 -p m328p ###Linux###

Отключите ножку «ресет» - диод мигать не будет, программа стёрта.

Прошьём МК скаченным ранее файлом 328test.hex . Лежит в корне диска C (c:\328test.hex) в windows или в домашней папке (/home/user/328test.hex) в linux.

Avrdude -c gromov -P com1 -p m328p -U flash:w:328test.hex ###WIN###
sudo avrdude -c gromov -P /dev/ttyS0 -p m328p -U flash:w:328test.hex ###Linux###

Теперь если отключить «ресет», контроллер оживёт.

Обратите внимание. При прошивке МК через avrdude , стирать контроллер необязательно, программа делает это сама. Однако если указать параметр -D , тогда МК не будет очищаться автоматически.

Прошивка EEPROM:

Avrdude -c gromov -P com1 -p m328p -U eeprom:w:eeprom.hex ###WIN###
sudo avrdude -c gromov -P /dev/ttyS0 -p m328p -U eeprom:w:eeprom.hex ###Linux###

Чтение всех фьюзов:

Avrdude -c gromov -P com1 -p m328p -U hfuse:r:hfuse.txt:h -U lfuse:r:lfuse.txt:h -U lock:r:lock.txt:h -U efuse:r:efuse.txt:h ###WIN###
sudo avrdude -c gromov -P /dev/ttyS0 -p m328p -U hfuse:r:hfuse.txt:h -U lfuse:r:lfuse.txt:h -U lock:r:lock.txt:h -U efuse:r:efuse.txt:h ###Linux###

У каких-то контроллеров может не быть каких-то фьюзов.

Чтение только Low fuse:

Avrdude -c gromov -P com1 -p m328p -U lfuse:r:lfuse.txt:h ###WIN###
sudo avrdude -c gromov -P com1 -p m328p -U lfuse:r:lfuse.txt:h ###Linux###

Low fuse отвечает за выбор источника тактового сигнала (внутренний, внешний), его частоту и за паузу перед стартом контроллера после подачи на него питания. Сейчас у вас там записано значение - 0xff , что соответствует внешнему кварцу от 8-ми и выше МГц.

Сейчас мы прошьём другой lfuse, который переведёт вашу ATmeg`у на работу от внутреннего генератора на 8Мгц.

Avrdude -c gromov -P com1 -p m328p -U lfuse:w:0xe2:m ###WIN###
sudo avrdude -c gromov -P /dev/ttyS0 -p m328p -U lfuse:w:0xe2:m ###Linux###

Если у вас ардуина на 16МГц, то диод будет мигать в два раза медленней.
В дальнейшем, при кодинге в AVR Studio, можно указывать частоту 8 МГц, а кварц отпаять, тем самым заполучив в своё распоряжение еще два свободных цифровых пина.

Но это потом, а сейчас вернём все как было прошив прежний фьюз:

Avrdude -c gromov -P com1 -p m328p -U lfuse:w:0xff:m ###WIN###
sudo avrdude -c gromov -P /dev/ttyS0 -p m328p -U lfuse:w:0xff:m ###Linux###

Диод будет мигать правильно.

Фьюзы можно прошивать как по отдельности так и вместе:

Avrdude -c gromov -P com1 -p m328p -U hfuse:w:0xda:m -U lfuse:w:0xff:m -U efuse:w:0x05:m ###WIN###
sudo avrdude -c gromov -P /dev/ttyS0 -p m328p -U hfuse:w:0xda:m -U lfuse:w:0xff:m -U efuse:w:0x05:m ###Linux###
Эти команды давать не нужно. Привожу их для наглядности.

В дальнейшем, когда потребуется использовать другие контроллеры, будете в онлайн-калькулятре расставлять «галочки», получать значения (по ссылке они в верхнем левом углу) в hex-формате и прошивать.

Теперь осталось разобраться с параметрами avrdude и можно будет переходить к заключительной части.

-c gromov - тип программатора, вернее название под которым он записан в конфиге (avrdude.conf) .
-P com1 - ну тут всё и так понятно.
-p m328p - обозначение тип МК.
-U - после этой опции указывается область памяти (flash, eeprom, xfuse) , над которой будет производится какие-либо действия (r - чтение, w - запись) .
Двоеточия служат разделителями.

Вот , с названиями микроконтроллеров и их псевдонимами, программаторами и прочими опциями.

Псевдонимы МК

uc3a0512 - AT32UC3A0512
c128 - AT90CAN128
c32 - AT90CAN32
c64 - AT90CAN64
pwm2 - AT90PWM2
pwm2b - AT90PWM2B
pwm3 - AT90PWM3
pwm316 - AT90PWM316
pwm3b - AT90PWM3B
1200 - AT90S1200 (****)
2313 - AT90S2313
2333 - AT90S2333
2343 - AT90S2343 (*)
4414 - AT90S4414
4433 - AT90S4433
4434 - AT90S4434
8515 - AT90S8515
8535 - AT90S8535
usb1286 - AT90USB1286
usb1287 - AT90USB1287
usb162 - AT90USB162
usb646 - AT90USB646
usb647 - AT90USB647
usb82 - AT90USB82
m103 - ATmega103
m128 - ATmega128
m1280 - ATmega1280
m1281 - ATmega1281
m1284p - ATmega1284P
m1284rfr2 - ATmega1284RFR2
m128rfa1 - ATmega128RFA1
m128rfr2 - ATmega128RFR2
m16 - ATmega16
m161 - ATmega161
m162 - ATmega162
m163 - ATmega163
m164p - ATmega164P
m168 - ATmega168
m168p - ATmega168P
m169 - ATmega169
m16u2 - ATmega16U2
m2560 - ATmega2560 (**)
m2561 - ATmega2561 (**)
m2564rfr2 - ATmega2564RFR2
m256rfr2 - ATmega256RFR2
m32 - ATmega32
m324p - ATmega324P
m324pa - ATmega324PA
m325 - ATmega325
m3250 - ATmega3250
m328 - ATmega328
m328p - ATmega328P
m329 - ATmega329
m3290 - ATmega3290
m3290p - ATmega3290P
m329p - ATmega329P
m32u2 - ATmega32U2
m32u4 - ATmega32U4
m406 - ATMEGA406
m48 - ATmega48
m48p - ATmega48P
m64 - ATmega64
m640 - ATmega640
m644 - ATmega644
m644p - ATmega644P
m644rfr2 - ATmega644RFR2
m645 - ATmega645
m6450 - ATmega6450
m649 - ATmega649
m6490 - ATmega6490
m64rfr2 - ATmega64RFR2
m8 - ATmega8
m8515 - ATmega8515
m8535 - ATmega8535
m88 - ATmega88
m88p - ATmega88P
m8u2 - ATmega8U2
t10 - ATtiny10
t11 - ATtiny11
t12 - ATtiny12
t13 - ATtiny13
t15 - ATtiny15
t1634 - ATtiny1634
t20 - ATtiny20
t2313 - ATtiny2313
t24 - ATtiny24
t25 - ATtiny25
t26 - ATtiny26
t261 - ATtiny261
t4 - ATtiny4
t40 - ATtiny40
t4313 - ATtiny4313
t43u - ATtiny43u
t44 - ATtiny44
t45 - ATtiny45
t461 - ATtiny461
t5 - ATtiny5
t84 - ATtiny84
t85 - ATtiny85
t861 - ATtiny861
t88 - ATtiny88
t9 - ATtiny9
x128a1 - ATxmega128A1
x128a1d - ATxmega128A1revD
x128a1u - ATxmega128A1U
x128a3 - ATxmega128A3
x128a3u - ATxmega128A3U
x128a4 - ATxmega128A4
x128a4u - ATxmega128A4U
x128b1 - ATxmega128B1
x128b3 - ATxmega128B3
x128c3 - ATxmega128C3
x128d3 - ATxmega128D3
x128d4 - ATxmega128D4
x16a4 - ATxmega16A4
x16a4u - ATxmega16A4U
x16c4 - ATxmega16C4
x16d4 - ATxmega16D4
x16e5 - ATxmega16E5
x192a1 - ATxmega192A1
x192a3 - ATxmega192A3
x192a3u - ATxmega192A3U
x192c3 - ATxmega192C3
x192d3 - ATxmega192D3
x256a1 - ATxmega256A1
x256a3 - ATxmega256A3
x256a3b - ATxmega256A3B
x256a3bu - ATxmega256A3BU
x256a3u - ATxmega256A3U
x256c3 - ATxmega256C3
x256d3 - ATxmega256D3
x32a4 - ATxmega32A4
x32a4u - ATxmega32A4U
x32c4 - ATxmega32C4
x32d4 - ATxmega32D4
x32e5 - ATxmega32E5
x384c3 - ATxmega384C3
x384d3 - ATxmega384D3
x64a1 - ATxmega64A1
x64a1u - ATxmega64A1U
x64a3 - ATxmega64A3
x64a3u - ATxmega64A3U
x64a4 - ATxmega64A4
x64a4u - ATxmega64A4U
x64b1 - ATxmega64B1
x64b3 - ATxmega64B3
x64c3 - ATxmega64C3
x64d3 - ATxmega64D3
x64d4 - ATxmega64D4
x8e5 - ATxmega8E5

Пользователи линукс могут воспользоваться wine.

Надеюсь у вас уже всё установлено, поэтому запускаем AVR Studio…


Здесь нам предлагается создать новый проект, либо открыть старый. Нажимаем New Project


Выбираем AVR GCC , так как писать будем на СИ, а не на ассемблере.
Даём название проекту и ставим «галочки».
Выбираем Location (я создал папку AVR на диске С:\) там будут автоматически создаваться папки с проектами.
Нажимаем Next


Выбираем AVR Simulator , так как у нас нету специального программатора, позволяющего вести отладку, и наш микроконтроллер - ATmega328p .
Жмём Finish .

После этих манипуляций студия готова к работе.

Слева - пути к проекту. По центру - текстовый редактор, в котором пишется код. Справа - регистры контроллера. Внизу-слева отладочная информация.

Из кнопочек нам пока интересны эти -

Сборка проекта.
Сборка проекта и запуск отладки.
Компиляция файла.
Очистка.
Настройка проекта. Вот её то и нажмите…

Здесь можно изменить тип МК, установить тактовую частоту (мы её пропишем прямо в коде) , уровень оптимизации, а так же определить, какие файлы будут создаваться.
Пощёлкайте для интереса иконки слева и нажмите Отмена .
Я не буду объяснять эти и другие опции, а позже дам ссылку с грамотным описанием.

Теперь скопируйте код написанный в начале статьи и вставьте его в редактор:

Тактовую частоту, мы прописали в коде потому, что этого требует библиотека delay.h .

Сборка прошла успешно, ошибок и предупреждений нет.

Теперь отправляемся по пути C:\AVR\my328\default\ , находим там сотворённый нами   hex-файл - my328.hex и прошиваем его в контроллер. Чем прошивать (avrdude или uniprof) выбирайте сами.

В avrdude это будет выглядеть так:

Avrdude -c gromov -P com1 -p m328p -U flash:w:\AVR\my328\default\my328.hex ###WIN###
avrdude -c gromov -P /dev/ttyS0 -p m328p -U flash:w:my328.hex ###Linux###

Отключите «ресет» и увидите как диод мигает раз в секунду. Надеюсь, что убедил вас в простоте и удобстве командной строки.

Чтобы обратно сделать ардуину ардуиной у вас есть бекап.

Как уже было написано выше, я не буду вдаваться в объяснения работы с AVR Studio, равно как и давать уроки по языку СИ. Во-первых, это не входило в мои планы (я лишь хотел помочь осуществить переход от Arduino к AVR Studio)

Для работы с AVR Studio 4 необходимо само собой её установить. Если она уже установлена, то можете пропустить этот шаг.

Установка:
создаешь каталог c:/avr/ – тут будут лежать рабочие программы.
создаешь каталог например c:/works/ – тут будут лежать твои работы.
надо что бы были короткие пути, что бы не было проблем с ними.

Есть вообще AVRStudio5 но и AVRStudio4 пока вполне хватает.

Вся работа будет проходить в AVRStudio4, WinAVR нужна только из-за библиотеки AVR-GCC (Для того, что бы можно было писать на Си)
НО! первым надо установить именно WinAVR , иначе библиотека AVR-GCC не подцепится.

Тут думаю разберешься.
AVR-GCC для того, что бы писать на Си
Atmel Avr Assembler соответственно для ассемблера.

Начинать разбираться с МК лучше с нуля. А это значит с Ассемблера, значит создаешь тот, который Atmel AVR Assembler.

Потом выбирай микроконтроллер Atmega8.

когда создастся проект, будет большой, белый, чистый лист. тут будет код.

немного про содержимое этого листа

“комментарии” – это текст, пропускаемый компилятором, при компиляции.
перед началом комментария должен стоять спец символ, пользуюсь символом; “точка с запятой”, есть еще “дабл сшеш” (//),
вот примеры комментариев

/* * Комментарий такого види(многострочный), * обычно используется для * сопроводительной информции * об исходном коде, т.е. * название, разработчик и т.д. */ NOP // Такой комментарий в основном используется для пояснения назначения команды, или куска кода SLEEP ; такой комментарий тоже как и предыдущий, можно использовать для пояснения (для заметок) в коде

команды записываются в каждой строчке. т.е. одна команда – одна строчка.
допустим есть команды с двумя “параметрами”, с одним, или без ничего

MOV R16, R17 ; два параметра INC R16 ; один параметр SEI ; без параметров

MOV R16, R17 ; три байта INC R16 ; два байта SEI ; один байт

Видите связь размера команды с параметрами?

У каждого микроконтроллера свой ассемблер, хотя мнимоника у них похожа, т.е. команда MOV у мк одной серии будет выглядеть в машинном коде допустим 0x12 а у другого 0x55.
что бы при компиляции, скомпилировалось в нужном нам коде мы должны сказать компилятору, для какого мк у нас пишется программа.
это вообще выбирается при создании проекта.
По этому мы выбрали микроконтроллер Atmega8.

Но и тут не все. для облегчения нашей жизни, в AVRStudio4 есть набор констант, которые именуются вроде как “Макроассемблер”.

Для тог, что бы их подгрузить нужно в начале кода вставить строчку

Include "m8def.inc" // командой.include, мы подгрузили файл m8def.inc ;и теперь нам станет легче;)

в самом начале кода, ставится таблица прерываний. Что это такое и как это работает, объясню в другой заметке. Но а пока, будем писать её так:

RJMP RESET ; Reset Handler RETI; RJMP EXT_INT0 ; IRQ0 Handler RETI; RJMP EXT_INT1 ; IRQ1 Handler RETI; RJMP TIM2_COMP ; Timer2 Compare Handler RETI; RJMP TIM2_OVF ; Timer2 Overflow Handler RETI; RJMP TIM1_CAPT ; Timer1 Capture Handler RETI; RJMP TIM1_COMPA ; Timer1 CompareA Handler RETI; RJMP TIM1_COMPB ; Timer1 CompareB Handler RETI; RJMP TIM1_OVF ; Timer1 Overflow Handler RETI; RJMP TIM0_OVF ; Timer0 Overflow Handler RETI; RJMP SPI_STC ; SPI Transfer Complete Handler RETI; RJMP USART_RXC ; USART RX Complete Handler RETI; RJMP USART_UDRE ; UDR Empty Handler RETI; RJMP USART_TXC ; USART TX Complete Handler RETI; RJMP ADC ; ADC Conversion Complete Handler RETI; RJMP EE_RDY ; EEPROM Ready Handler RETI; RJMP ANA_COMP ; Analog Comparator Handler RETI; RJMP TWSI ; Two-wire Serial Interface Handler RETI; RJMP SPM_RDY ; Store Program Memory Ready Handler

После этого идет уже сам код

RESTART: ; маркер инициализации MAIN: NOP ; маркер главного цикла RJMP MAIN

Но тут есть одна (точнее не одна, а много) особенностей.

Для удобства написания кода, для его понятности и для облегчения относительных переходов, нам подарили маркеры, как они выглядят? “RESET:” и “MAIN:” это маркеры, в их именах могут содержаться почти любые символы латинского алфавита и цифры. Маркеры не могут иметь имена функций и команд, допустим “NOP”.
Как к ним переходит? Допустим командой RJMP.

Так же, из Маркеров, можно сделать подпрограмму(процедуру), по завершению которой, мы вернемся туда, от куда её вызывали. Для вызова её, используем команду “RCALL (подпрограмма)”, а что бы вернуться из Подпрограммы(процедуры), нужно закончить её командой “RET”. У нас должен получиться такой код:

RESTART: MAIN: NOP RCALL PPP1 ; вызываем подпрограмму RJMP MAIN PPP1: NOP RET ; выходим из подпрограммы

Как работает команда “RCALL”, при её вызове, адрес из какого места её вызвали, помещается в СТЕК, а по вызове команды “RET”, извлекается из регистра “стек”. СТЕК нужно инициализировать.

Что бы нам работать с нашим мк, нужно его инициализировать. т.к. мк, это устройство универсальное, в нем есть много портов ввода/вывода, и периферийных устройств. таких как УСАПП, ШИМ, ЦАП, АЦП и т.д. Первым делом в инициализации мк нужно указать начало “стека”. Инициализацию мы проводим после маркера “RESET:”.

LDI R16,HIGH(RAMEND) OUT SPH,R16 LDI R16,LOW(RAMEND) OUT SPL,R16

Если бы мы не вводили команду.include “m8def.inc” в начале кода, то нам пришлось бы писать так:

LDI R16,0x04 OUT SPH,R16 LDI R16,0x5f OUT SPL,R16

Разница существенная, на мой взгляд.

СТЕК, это память магазинного типа: (последний вошедший, выходит первым).
Магазинного типа – это не супермаркет, а рожок от автомата. надеюсь все представили как в него заряжаются патроны и как они потом от туда извлекаются.
Нужно уделять очень большое внимание памяти СТЕК, т.к. любая незначительная ошибка в работе с ним, может привести к срыву стека. Это на столько важная тема, что я решил посветить ей целую тему и напишу её в отдельной заметке.

Таким образом у нас получился такой код:

Include "m8def.inc" RJMP RESET ; Reset Handler RETI; RJMP EXT_INT0 ; IRQ0 Handler RETI; RJMP EXT_INT1 ; IRQ1 Handler RETI; RJMP TIM2_COMP ; Timer2 Compare Handler RETI; RJMP TIM2_OVF ; Timer2 Overflow Handler RETI; RJMP TIM1_CAPT ; Timer1 Capture Handler RETI; RJMP TIM1_COMPA ; Timer1 CompareA Handler RETI; RJMP TIM1_COMPB ; Timer1 CompareB Handler RETI; RJMP TIM1_OVF ; Timer1 Overflow Handler RETI; RJMP TIM0_OVF ; Timer0 Overflow Handler RETI; RJMP SPI_STC ; SPI Transfer Complete Handler RETI; RJMP USART_RXC ; USART RX Complete Handler RETI; RJMP USART_UDRE ; UDR Empty Handler RETI; RJMP USART_TXC ; USART TX Complete Handler RETI; RJMP ADC ; ADC Conversion Complete Handler RETI; RJMP EE_RDY ; EEPROM Ready Handler RETI; RJMP ANA_COMP ; Analog Comparator Handler RETI; RJMP TWSI ; Two-wire Serial Interface Handler RETI; RJMP SPM_RDY ; Store Program Memory Ready Handler RESET: LDI R16,HIGH(RAMEND) OUT SPH,R16 LDI R16,LOW(RAMEND) OUT SPL,R16 RGMP RESET MAIN: NOP ; маркер главного цикла RJMP MAIN

На данном этапе, можно скомпилировать проект и запустить его для отладки, но по скольку код у нас ничего не делает, можно будет выявить только синтаксические ошибки в коде.

Для правильного процесса отладки, необходимо задать эмулятору частоту, с которой будет работать МК, это делается только после компиляции и запуска отладки,
значит находим в панели меню “Build”, раскрываем её и видим “Build and Run”, после чего, мы увидим желтую стрелочку на против первой команды в нашем листинге кода. Теперь мы ищем в панели меню “Debug” и нажимаем “AVR Simulator Options”, открывается такое окно:

В котором мы можем поменять МК и его частоту, так же, на панели с права, мы видим некоторую информацию о нашем МК: его максимальную частоту, объемы памяти(EEPROM, RAM, FLASH). Теперь открываем даташит на Atmega8, на странице 203 (общий список регистров) и 205 (общий список команд) и приступай к написанию своей программы.
И запомни, не бойся экспериментировать с симулятором, он от этого не сломается!

Я не раз и не два говорил, что изучение МК надо начинать с ассемблера. Этому был посвящен целый курс на сайте (правда он не очень последовательный, но постепенно я его причесываю до адекватного вида) . Да, это сложно, результат будет не в первый день, но зато ты научишься понимать что происходит у тебя в контроллере. Будешь знать как это работает, а не по обезьяньий копировать чужие исходники и пытаться понять почему оно вдруг перестало работать. Кроме того, Си намного проще натворить быдлокода, который вылезет вилами в самый неподходящий момент.

К сожалению все хотят результат немедленно. Поэтому я решил пойти с другой стороны — сделать обучалку по Си, но с показом его нижнего белья. Хороший программист-эмбеддер всегда крепко держит свою железку за шкварник, не давая ей ни шагу ступить без разрешения. Так что будет вначале Си код, потом то что родил компилятор и как все это работает на самом деле:)

С другой стороны у Си сильная сторона это переносимость кода. Если, конечно, писать все правильно. Разделяя алгоритмы работы и их железные реализации в разные части проекта. Тогда для переноса алгоритма в другой МК достаточно будет переписать только интерфейсный слой, где прописано все обращение к железу, а весь рабочий код оставить как есть. И, конечно же, читаемость. Сишный исходник проще понять с первого взгляда (хотя.. мне, например, уже пофигу на что фтыкать — хоть си, хоть асм:)), но, опять же, если правильно все написать. Этим моментам я тоже буду уделять внимание.

В качестве подопытной железки на которой будет ставиться львинная доля всех примеров будет моя отладочная плата .

Первая программа на Си для AVR

Выбор компилятора и установка среды
Для AVR существует множество разных компиляторов Си:
В первую очередь это IAR AVR C — почти однозначно признается лучшим компилятором для AVR, т.к. сам контроллер создавался тесном сотрудничистве Atmel и спецов из IAR. Но за все приходится платить. И этот компилятор мало того, что является дорогущим коммерческим софтом, так еще обладает такой прорвой настроек, что просто взять и скомпилить в нем это надо постраться. У меня с ним правда не срослось дружбы, проект загнивал на странных ошибках на этапе линковки (позже выяснил, что это был кривой кряк).

Вторым идет WinAVR GCC — мощный оптимизирующий компилятор. Полный опенсорц, кроссплатформенный, в общем, все радости жизни. Еще он отлично интегрируется в AVR Studio позволяя вести отладку прямо там, что адски удобно. В общем, я выбрал его.

Также есть CodeVision AVR C — очень популярный компилятор. Стал популярен в связи со своей простотой. Рабочую программу в нем получить можно уже через несколько минут — мастер стартового кода этом сильно способствует, штампуя стандартыне инициализации всяких уартов. Честно говоря, я как то с подозрением к нему отношусь — как то раз приходилось дизасмить прогу написаную этим компилером, каша какая то а не код получалась. Жуткое количество ненужных телодвижений и операций, что выливалось в неслабый обьем кода и медленное быстродействие. Впрочем, возможно тут была ошибка в ДНК писавшего исходную прошивку. Плюс он хочет денег. Не так много как IAR, но ощутимо. А в деморежиме дает писать не более чем 2кб кода.
Кряк конечно есть, но если уж воровать, так миллион, в смысле IAR:)

Еще есть Image Craft AVR C и MicroC от микроэлектроники. Ни тем ни другим пользоваться не приходилось, но вот SWG очень уж нахваливает MicroPascal , мол жутко удобная среда программирования и библиотеки. Думаю MicroC не хуже будет, но тоже платный.

Как я уже сказал, я выбра WinAVR по трем причинам: халявный, интегрируется в AVR Studio и под него написана просто прорва готового кода на все случаи жизни.

Так что качай себе инсталяху WinAVR с и AVR Studio. Далее вначале ставится студия, потом, сверху, накатывается WinAVR и цепляется к студии в виде плагина. Настоятельно рекомендую ставить WinAVR по короткому пути, что то вроде C:\WinAVR тем самым ты избежишь кучи проблем с путями.

Cоздание проекта
Итак, студия поставлена, Си прикручен, пора бы и попробовать что нибудь запрограммировать. Начнем с простого, самого простого. Запускай студию, выбирай там новый проект, в качестве компилятора AVR GCC и вписывай название проекта.

Открывается рабочее поле с пустым *.c файлом.

Теперь не помешает настроить отображение путей в закладках студии. Для этого слазь по адресу:
Меню Tools — Options — General — FileTabs и выбираем в выпадающем списке «Filename Only». Иначе работать будет невозможно — на вкладке будет полный путь файла и на экране будет не более двух трех вкладок.

Настройка проекта
Вообще, классическим считается создание make файла в котором бы были описаны все зависимости. И это, наверное, правильно. Но мне, выросшему на полностью интегрированных IDE вроде uVision или AVR Studio этот подход является глубоко чуждым. Поэтому буду делать по своему, все средствами студии.

Тыкай в кнопку с шестеренкой.


Это настройки твоего проекта, а точнее настройки автоматической генерации make файла. На первой странице надо всего лишь вписать частоту на которой будет работать твой МК. Это зависит от фьюз битов, так что считаем что частота у нас 8000000Гц.
Также обрати внимание на строку оптимизации. Сейчас там стоит -Os это оптимизация по размеру. Пока оставь как есть, потом можешь попробовать поиграться с этим параметром. -O0 это отстутсвие оптимизации вообще.

Следующим шагом будет настройка путей. Первым делом добавь туда директорию твоего проекта — будешь туда подкладывать сторонние библиотеки. В списке появится путь «.\»

Make файл сгенерирован, его ты можешь поглядеть в папке default в своем проекте, просто пробегись глазами, посмотри что там есть.


На этом пока все. Жми везде ОК и переходи в исходник.

Постановка задачи
Чистый лист так и подмывает воплотить какую нибудь хитрую задумку, так как банальное мигание диодом уже не вставляет. Давай уж сразу брать быка за рога и реализуем связь с компом — это первым делом что я делаю.

Работать будет так:
При приходе по COM порту единички (код 0х31) будем зажигать диодик, а при приходе нуля (код 0х30) гасить. Причем сделано будет все на прерываниях, а фоновой задачей будет мигание другого диода. Простенько и со смыслом.

Собираем схему
Нам надо соединить модуль USB-USART конвертера с выводами USART микроконтроллера. Для этого берем перемычку из двух проводков и накидывам на штырьки крест накрест. То есть Rx контроллера соединяем с Tx конвертера, а Tx конвертера с Rx контроллера.

Получится, в итоге вот такая схема:


Подключение остальных выводов, питания, сброса не рассматриваю, оно стандартное

Пишем код

Сразу оговорюсь, что я не буду углубляться конкретно в описание самого языка Си. Для этого существует просто колоссальное количество материала, начиная от классики «Язык программирования Си» от K&R и заканчивая разными методичками.

Одна такая метода нашлась у меня в загашнике, я когда то именно по ней изучал этот язык. Там все кратко, понятно и по делу. Я ее постепенно верстаю и перестаскиваю на свой сайт.

Там правда еще не все главы перенесены, но, думаю, это ненадолго.

Вряд ли я опишу лучше, поэтому из учебного курса, вместо подробного разьяснения сишных тонкостей, я буду просто давать прямые линки на отдельные страницы этой методички.

Добавляем библиотеки.
Первым делом мы добавляем нужные библиотеки и заголовки с определениями. Ведь Си это универсальный язык и ему надо обьяснить что мы работаем именно с AVR, так что вписывай в исходник строку:

1 #include

#include

Этот файл находится в папке WinAVR и в нем содержится описание всех регистров и портов контроллера. Причем там все хитро, с привязкой к конкретному контроллеру, который передается компилятором через make файл в параметре MCU и на основании этой переменной в твой проект подключается заголовочный файл с описанием адресов всех портов и регистров именно на этот контроллер. Во как! Без него тоже можно, но тогда ты не сможешь использовать символические имена регистров вроде SREG или UDR и придется помнить адрес каждого вроде «0xC1», а это голову сломать.

Сама же команда #include <имя файла> позволяет добавить в твой проект содержимое любого текстового файла, например, файл с описанием функций или кусок другого кода. А чтобы директива могла этот файл найти мы и указывали пути к нашему проекту (директория WinAVR там уже по дефолту прописана).

Главная функция.
Программа на языке Си вся состоит из функций. Они могут быть вложенными и вызываться друг из друга в любом порядке и разными способами. Каждая функция имеет три обязательных параметра:

  • Возвращаемое значение, например, sin(x) возвращает значение синуса икс. Как в математике, короче.
  • Передаваемые параметры, тот самый икс.
  • Тело функции.

Все значения передаваемые и возвращаемые обязаны быть какого либо типа, в зависимости от данных.

Любая программа на Си должна содержать функцию main как точку входа в главную прогрмму, иначе это нифига не Си:). По наличию main в чужом исходнике из миллиона файлов можно понять, что это и есть головная часть программы откуда начинается все. Вот и зададим:

1 2 3 4 5 int main(void ) { return 0 ; }

int main(void) { return 0; }

Все, первая простейшая программа написана, не беда что она ничего не делает, мы же только начали.

Разберем что же мы сделали.
int это тип данных которая функция main возвращает.

Конечно, в микроконтроллере main ничего вернуть в принципе не может и по идее должна быть void main(void) , но GCC изначально заточен на PC и там программа может вернуть значение операционной системе по завершении. Поэтому GCC на void main(void) ругается Warning’ом.

Это не ошибка, работать будет, но я не люблю варнинги.

void это тип данных которые мы передаем в функцию, в данном случае main также не может ничего принять извне, поэтом void — пустышка. Заглушка, применяется тогда когда не надо ничего передавать или возвращать.

Вот такие вот { } фигурные скобочки это программный блок, в данном случае тело функции main , там будет распологаться код.

return — это возвращаемое значение, которое функция main отдаст при завершении, поскольку у нас int, то есть число то вернуть мы должны число. Хотя это все равно не имеет смысла, т.к. на микроконтроллере из main нам выходить разве что в никуда. Я возвращаю нуль. Ибо нефиг. А компилятор обычно умный и на этот случай код не генерит.
Хотя, если извратиться, то из main на МК выйти можно — например вывалиться в секцию бутлоадера и исполнить ее, но тут уже потребуется низкоуровневое ковыряние прошивки, чтобы подправить адреса перехода. Ниже ты сам увидишь и поймешь как это сделать. Зачем? Вот это уже другой вопрос, в 99.999% случаев это нафиг не надо:)

Сделали, поехали дальше. Добавим переменную, она нам не особо нужна и без нужны вводить переменные не стоит, но мы же учимся. Если переменные добавляются внутри тела функции — то они локальные и существуют только в этой функции. Когда из функции выходишь эти переменные удаляются, а память ОЗУ отдается под более важные нужды. .

1 2 3 4 5 6 int main(void ) { unsigned char i; return 0 ; }

int main(void) { unsigned char i; return 0; }

unsigned значит беззнаковый. Дело в том, что в двоичном представлении у нас старший бит отводится под знак, а значит в один байт (char) влазит число +127/-128, но если знак отбросить то влезет уже от 0 до 255. Обычно знак не нужен. Так что unsigned .
i — это всего лишь имя переменной. Не более того.

Теперь надо проинициализировать порты и UART . Конечно, можно взять и подключить библиотеку и вызвать какой нибудь UartInit(9600); но тогда ты не узнаешь что же произошло на самом деле.

Делаем так:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 int main(void ) { unsigned char i; #define XTAL 8000000L #define baudrate 9600L #define bauddivider (XTAL/(16*baudrate)-1) #define HI(x) ((x)>>8) #define LO(x) ((x)& 0xFF) UBRRL = LO(bauddivider) ; UBRRH = HI(bauddivider) ; UCSRA = 0 ; UCSRB = 1 << RXEN| 1 << TXEN| 1 << RXCIE| 0 << TXCIE; UCSRC = 1 << URSEL| 1 << UCSZ0| 1 << UCSZ1; }

int main(void) { unsigned char i; #define XTAL 8000000L #define baudrate 9600L #define bauddivider (XTAL/(16*baudrate)-1) #define HI(x) ((x)>>8) #define LO(x) ((x)& 0xFF) UBRRL = LO(bauddivider); UBRRH = HI(bauddivider); UCSRA = 0; UCSRB = 1<

Страшна? На самом деле реалного кода тут всего пять последних строк. Все что #define это макроязык препроцессора. Почти та же ботва, что и в Ассемблере, но синтаксис несколько иной.

Они облегчат твои рутинные операции по вычислении нужных коэффициентов. В первой строке мы говорим что вместо XTAL можно смело подставлять 8000000, а L — указание типа, мол long — это тактовая частота процессора. То же самое baudrate — частота передачи данных по UART.

bauddivider уже сложней, вместо него будет подставлятся выражение вычисленное по формуле из двух предыдущих.
Ну, а LO и HI из этого результата возьмут младший и старший байты, т.к. в один байт оно явно может не влезть. В HI делается сдвиг икса (входной параметр макроса) восемь раз в вправо, в результате от него останется только старший байт. А в LO мы делаем побитовое И с числом 00FF, в результате останется только младший байт.

Так что все что сделано как #define можно смело выкинуть, а нужные числа подсчитать на калькуляторе и сразу же вписать их в строки UBBRL = …. и UBBRH = …..

Можно. Но! Делать этого КАТЕГОРИЧЕСКИ НЕЛЬЗЯ !

Работать будет и так и эдак, но у тебя в программе появятся так называемые магические числа — значения взятые непонятно откуда и непонятно зачем и если ты через пару лет откроешь такой проект то понять что это за значения будет чертовски трудно. Да и сейчас, захочешь ты изменить скорость, или поменяешь частоту кварца и все придется пересчитывать заново, а так поменял пару циферок в коде и все само. В общем, если не хочешь прослыть быдлокодером, то делай код таким, чтобы он легко читался, был понятен и легко модифицировался.

Дальше все просто:
Все эти «UBRRL и Со» это регистры конфигурации UART передатчика с помощью которого мы будем общаться с миром. И сейчас мы присвоили им нужные значения, настроив на нужную скорость и нужный режим.

Запись вида 1< Означает следующее: взять 1 и поставить ее на место RXEN в байте. RXEN это 4й бит регистра UCSRB , так что 1< образует двоичное число 00010000, TXEN — это 3й бит, а 1< даст 00001000. Одиночная «|» это побитовое ИЛИ , так что 00010000 | 00001000 = 00011000. Таким же образом выставляются и добавляются в общуюу кучу остальные необходимые биты конфигурации. В итоге, собраное число записывается в UCSRB. Подробней расписано в даташите на МК в разделе USART. Так что не отвлекаемся на технические детали.

Готово, пора бы посмотреть что получилось. Жми на компиляцию и запуск эмуляции (Ctrl+F7).

Отладка
Пробежали всякие прогресс бары, студия переменилась и возле входа в функцию main появилась желтая стрелочка. Это то где процессор в текущий момент, а симуляция на паузе.

Дело в том, что изначально, на самом деле, она стояла на строке UBRRL = LO(bauddivider); Ведь то что у нас в define это не код, а просто предварительные вычисления, вот симулятор немного и затупил. Но теперь он осознал, первая инструкция выполнена и если ты залезешь в дерево I/O View , в раздел USART и поглядишь там на байт UBBRL то увидишь, что там значение то уже есть! 0х33.

Сделай еще один шаг. Погляди как изменится содержимое другого регистра. Так прошагай их все, обрати внимание на то, что все указаные биты выставляются как я тебе и говорил, причем выставляются одновременно для всего байта. Дальше Return дело не пойдет — программа кончилась.

Вскрытие
Теперь сбрось симуляцию в ноль. Нажми там Reset (Shift+F5) . Открывай дизассемблированный листинг, сейчас ты увидишь что происходит в контроллере в самом деле. View -> Disassembler . И не ЫЫАААА!!! Ассемблер!!! УЖОС!!! А НАДО. Чтобы потом, когда что то пойдет не так, не тупил в код и не задавал ламерских вопросах на форумах, а сразу же лез в потроха и смотрел где у тебя затык. Ничего там страшного нет.

Вначале будет ботва из серии:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 +00000000: 940C002A JMP 0x0000002A Jump +00000002: 940C0034 JMP 0x00000034 Jump +00000004: 940C0034 JMP 0x00000034 Jump +00000006: 940C0034 JMP 0x00000034 Jump +00000008: 940C0034 JMP 0x00000034 Jump +0000000A: 940C0034 JMP 0x00000034 Jump +0000000C: 940C0034 JMP 0x00000034 Jump +0000000E: 940C0034 JMP 0x00000034 Jump +00000010: 940C0034 JMP 0x00000034 Jump +00000012: 940C0034 JMP 0x00000034 Jump +00000014: 940C0034 JMP 0x00000034 Jump +00000016: 940C0034 JMP 0x00000034 Jump +00000018: 940C0034 JMP 0x00000034 Jump +0000001A: 940C0034 JMP 0x00000034 Jump +0000001C: 940C0034 JMP 0x00000034 Jump +0000001E: 940C0034 JMP 0x00000034 Jump +00000020: 940C0034 JMP 0x00000034 Jump +00000022: 940C0034 JMP 0x00000034 Jump +00000024: 940C0034 JMP 0x00000034 Jump +00000026: 940C0034 JMP 0x00000034 Jump +00000028: 940C0034 JMP 0x00000034 Jump

00000000: 940C002A JMP 0x0000002A Jump +00000002: 940C0034 JMP 0x00000034 Jump +00000004: 940C0034 JMP 0x00000034 Jump +00000006: 940C0034 JMP 0x00000034 Jump +00000008: 940C0034 JMP 0x00000034 Jump +0000000A: 940C0034 JMP 0x00000034 Jump +0000000C: 940C0034 JMP 0x00000034 Jump +0000000E: 940C0034 JMP 0x00000034 Jump +00000010: 940C0034 JMP 0x00000034 Jump +00000012: 940C0034 JMP 0x00000034 Jump +00000014: 940C0034 JMP 0x00000034 Jump +00000016: 940C0034 JMP 0x00000034 Jump +00000018: 940C0034 JMP 0x00000034 Jump +0000001A: 940C0034 JMP 0x00000034 Jump +0000001C: 940C0034 JMP 0x00000034 Jump +0000001E: 940C0034 JMP 0x00000034 Jump +00000020: 940C0034 JMP 0x00000034 Jump +00000022: 940C0034 JMP 0x00000034 Jump +00000024: 940C0034 JMP 0x00000034 Jump +00000026: 940C0034 JMP 0x00000034 Jump +00000028: 940C0034 JMP 0x00000034 Jump

Это таблица векторов прерываний. К ней мы еще вернемся, пока же просто посмотри и запомни, что она есть. Первая колонка — адрес ячейки флеша в которой лежит команда, вторая код команды третья мнемоника команды, та самая ассемблерная инструкция, третья операнды команды. Ну и автоматический коммент.
Так вот, если ты посмотришь, то тут сплошные переходы. А код команды JMP четырех байтный, в нем содержится адрес перехода, записанный задом наперед — младший байт по младшему адресу и код команды перехода 940C

0000002B: BE1F OUT 0x3F,R1 Out to I/O location

Запись этого нуля по адресу 0x3F, Если ты поглядишь в колонку I/O view, то ты увидишь что адрес 0x3F это адрес регистра SREG — флагового регистра контроллера. Т.е. мы обнуляем SREG, чтобы запустить программу на нулевых условиях.

1 2 3 4 +0000002C: E5CF LDI R28,0x5F Load immediate +0000002D: E0D4 LDI R29,0x04 Load immediate +0000002E: BFDE OUT 0x3E,R29 Out to I/O location +0000002F: BFCD OUT 0x3D,R28 Out to I/O location

0000002C: E5CF LDI R28,0x5F Load immediate +0000002D: E0D4 LDI R29,0x04 Load immediate +0000002E: BFDE OUT 0x3E,R29 Out to I/O location +0000002F: BFCD OUT 0x3D,R28 Out to I/O location

Это загрузка указателя стека. Напрямую грузить в I/O регистры нельзя, только через промежуточный регистр. Поэтому сначала LDI в промежуточный, а потом оттуда OUT в I/O. О стеке я тоже еще расскажу подробней. Пока же знай, что это такая динамическая область памяти, висит в конце ОЗУ и хранит в себе адреса и промежуточные переменные. Вот сейчас мы указали на то, откуда у нас будет начинаться стек.

00000032: 940C0041 JMP 0x00000041 Jump

Прыжок в сааааамый конец программы, а там у нас запрет прерываний и зацикливание наглухо само на себя:

1 2 +00000041: 94F8 CLI Global Interrupt Disable +00000042: CFFF RJMP PC-0x0000 Relative jump

00000041: 94F8 CLI Global Interrupt Disable +00000042: CFFF RJMP PC-0x0000 Relative jump

Это на случай непредвиденых обстоятельств, например выхода из функции main. Из такого зацикливания контроллер можно вывести либо аппаратным сбросом, либо, что вероятней, сбросом от сторожевой собаки — watchdog. Ну или, как я говорил выше, подправить это мест в хекс редакторе и ускакать куда нам душе угодно. Также обрати внимание на то, что бывает два типа переходов JMP и RJMP первый это прямой переход по адресу. Он занимает четыре байта и может сделать прямой переход по всей области памяти. Второй тип перехода — RJMP — относительный. Его команда занимает два байта, но переход он делает от текущего положения (адреса) на 1024 шага вперед или назад. И в его параметрах указывается смещение от текущей точки. Используется чаще, т.к. занимает в два раза меньше места во флеше, а длинные прееходы нужны редко.

1 +00000034: 940C0000 JMP 0x00000000 Jump

00000034: 940C0000 JMP 0x00000000 Jump

А это прыжок в самое начало кода. Перезагрузка своего рода. Можешь проверить, все вектора прыгают сюда. Из этого вывод — если ты сейчас разрешишь прерывания (они по дефолту запрещены) и у тебя прерывание пройзойдет, а обработчика нет, то будет программный сброс — программу кинет в самое начало.

Функция main. Все аналогично, даже можно и не описывать. Посмотри только что в регистры заносится уже вычисленное число. Препроцессор компилятора рулит!!! Так что никаких «магических» чисел!

1 2 3 4 5 6 7 8 9 10 11 12 <

00000036: E383 LDI R24,0x33 Load immediate +00000037: B989 OUT 0x09,R24 Out to I/O location 15: UBRRH = HI(bauddivider); +00000038: BC10 OUT 0x20,R1 Out to I/O location 16: UCSRA = 0; +00000039: B81B OUT 0x0B,R1 Out to I/O location 17: UCSRB = 1<

А вот тут косяк:

1 2 3 +0000003E: E080 LDI R24,0x00 Load immediate +0000003F: E090 LDI R25,0x00 Load immediate +00000040: 9508 RET Subroutine return

0000003E: E080 LDI R24,0x00 Load immediate +0000003F: E090 LDI R25,0x00 Load immediate +00000040: 9508 RET Subroutine return

Спрашивается, для чего это компилятор добавляет такую ботву? А это не что иное, как Return 0, функцию то мы определили как int main(void) вот и просрали еще целых четыре байта не пойми на что:) А если сделать void main(void) то останется только RET, но появится варнинг, что мол у нас функция main ничего не возвращает. В общем, поступай как хошь:)

Сложно? Вроде бы нет. Пощелкай пошаговое исполнение в режиме дизассемблера и позырь как процессор выполняет отдельные инструкции, что при этом происходит с регистрами. Как происходит перемещение по командам и итоговое зацикливание.

Продолжение следует через пару дней …

Offtop:
Alexei78 сварганил плагинчик для файрфокса облегчающий навигацию по моему сайту и форуму.
Обсуждение и скачивание,

Каждый человек, который только начинает осваивать программирование микроконтроллеров, да и вообще программирование, упирается сразу в несколько вопросов:
1. Какой микроконтроллер выбрать для максимально быстрого освоения?
2. Какой основной инструмент (программу) использовать для начала работы?
3. Какие аппаратные средства доступны для начала программирования?
4. Какую литературу использовать?
5. Где общаться и получать вразумительные советы?

Когда я начинал, то сам столкнулся с этими вопросами. Начал искать литературу и решил, что надо начинать с PIC -ов. Перевес в сторону PIC -ов определился из за небольшого количества команд микропроцессоров среднего семейства - всего 35 против 136 у AVR , и наличием IDE - интегрированной среды разработки MPLAB . К сожалению, до последнего времени для микроконтроллеров AVR не было удобной интегрированной среды разработки, многие пользовались AVR Studio 4 , кто то писал на C в IAR, для отладки пользовались дополнительными программами, все зависило от личных приоритетов.

В этом году компания ATMEL наконец то «родила» IDE - AVR Studio 5 для программирования микроконтроллеров AVR . Много критических замечаний было сказано в адрес этой программы, но она существует и работает, возможно, компания со временем учтет все критические замечания, и сделает программу более гибкой, совершенной и не такой большой по размеру. Конечно по объему это монстр - инсталлируемый файл занимает 600 с лишним МБайт. Но, есть в ней и определенные удобства в работе, и не только для начинающих! Программа ориентирована для работы в среде C, но ассемблер поддерживается полностью.

Итак, попробуем ответить на возникшие вопросы:

1. Выбор микроконтроллера определяется теми задачами, которые вы перед собой поставили. Микроконтроллеры AVR имеют «избыточный» набор команд, и поэтому большинство программистов используют в среднем около 40 инструкций, редко прибегая к остальным. С другой стороны, когда требуется нетипичное решение, дополнительные команды могут оказаться весьма кстати, позволяя значительно сократить объем программы.
Технология производства микроконтроллеров сегодня одинакова как для PIC так и для AVR - RISC (Reduced Instruction Set Computer) - микроконтроллеры с сокращенным набором команд. Большинство из них имеют флеш-память, которая позволяет многократно их перезаписывать. Кроме этого микроконтроллеры AVR работают в 4 раза быстрее микроконтроллеров PIC .

2. Для начала, чтобы начать писать программы, нужно скачать интегрированную среду разработки AVR Studio 5
(Прямая ссылка на , будет работать, пока не смениться билд.)
А чтобы наглядно видеть результат своей работы, не используя паяльник или макетную плату достаточно установить программу Proteus v7.7

3. AVR Studio 5 поддерживает программатор STK-500 , инструкции по сборке которого, можно легко найти в просторах всемирной паутины.

5. Советы вы можете получать на любом форуме, где так или иначе затронуты темы по микроконтроллерам. Главное на форумах правильно формулировать вопросы, чтобы четко получать ответы. Абстрактные вопросы не приветствуются, и скорее всего вместо ответа вы получите жесткую критику, или ваш вопрос останется без внимания!
Скачать AVR Studio 5 можно, например, после бесплатной регистрации. Proteus вместе с патчем можно найти в Сети.

AVR Studio 5

Создание проекта
Примечание: AVR Studio «не любит» русских названий, поэтому проекты должны быть с английской транскрипцией. Старайтесь размещать проекты по кратчайшему пути к основному диску, избегать ветвлений в путях доступа к файлам проекта.

Запускаем программу, после некоторого «молчания» появляется окно:


В левом верхнем углу кликаем New Project…


Выбираем наверху AVR Assembler
В строке Name: пишем имя проекта (я написал Pracsis, вы можете Praxis или что то наподобие…)
В строке Location: путь и место хранения файлов проекта (в том числе файлы.asm и.hex)
Имя проекта введенное в строке Solution name: будет выводится в меню при старте (я эту строку не трогаю, чтобы не путаться)


кликаем OK
Появляется окно выбора микроконтроллера (Device Selection)


Выбираем контроллер (я выбрал ATtiny2313A)
кликаем ОК
Появляется станица редактора

Все наши файлы можно посмотреть в Моих документах (по умолчанию, если при создании проекта путь к файлам был изменен, то ищем их там, где вы их указали в строке