RFID-технология. RFID: спорная технология будущего

Пока в стране идут новогодние праздники и все отдыхают наконец соберу весь накопленный материал в одну кучку. Я давно не писал в блог, постараюсь исправиться в нынешнем году. Я не пишу о политике, философии, событиях моей жизни, только о железках. Увы о железах на работе я писать не могу в силу определенных причин, но копится материал научно-популярного и просветительского толка. Очень сложно написать лучше, чем уже написано в той же википедии.

RFID – R adio F requency ID entification – радиочастотная идентификация. На сегодня RFID метки это более широкое понятие и сюда приплетают в том числе и беспроводные сенсоры, хотя идентификация – не их основное занятие. RFID метка – это небольшое устройство, которое позволяет на расстоянии, в отсутствие прямой видимости считать сохраненные на нем данные, тем самым идентифицировать объект. Это как штрихкод, наклеенный на товар, только работающий по радио.

RFID метки бывают разных типов. По способу электропитания различают пассивные (полностью получают питание для работы от излучения считывателя) и активные (имеют на себе батарейку). Само собой у пассивных дальность действия ниже, зато срок службы ничем не ограничен. У активных все лучше, и дальность действия, и начинка поинтеллектуальнее, но батарейку нужно будет менять.

По радиочастотному диапазону различают LF (125 кГц), HF (13.56 МГц) и UHF (860-960 МГц).

Принцип действия

Считыватель и метка имеют катушки индуктивности, образующие колебательный контур. Когда считыватель создает переменное магнитное поле своей катушкой, магнитный поток проходя через катушку метки возбуждает в ней ток. Точно так же как работает к примеру беспроводная зарядка. Метка от возбужденного в катушке тока получает питание, и используя транзистор может на некоторое время (питаясь в это время от накопленного в конденсаторе заряда) замыкать катушку накоротко, тем самым меняя значение амплитуды тока в катушке считывателя. Считыватель фиксирует эти изменения, тем самым принимая сигнал от метки.

Устройства UHF диапазона работают аналогично, только вместо катушек – диполи:

(Иллюстрация из книги RFID Handbook by Klaus Finkenzeller 2 редакция)

Само собой это означает что весь обмен данными между меткой и считывателем происходит публично, и при решении задач определения подлинности нужно это учитывать.

Активные метки более разнообразны по устройству, некоторые вообще по сути являются радиомаяками, по несколько раз в секунду просто посылая в эфир свой номер (parsec). RFID метка помимо микроконтроллера, обеспечивающего передачу уникального номера может быть оснащена различными датчиками. Например датчиком давления. Такой датчик можно разместить в шину автомобиля и непрерывно контролировать давление воздуха в шине.

С каждым днем RFID меткам находят все больше применений. Начиная от использования в качестве ключей для домофона заканчивая противокражными метками в магазинах самообслуживания. Именно увеличение спроса, снижение стоимости из-за массового производства позволяет находить все новые и новые применения.

Метка передает считывателю в ответе на запрос свой уникальный номер. Более сложные метки имеют немного памяти на борту и могут хранить какую либо информацию, например количество оставшихся поездок, что избавляет от необходимости создания центрального сервера и поддержки его на связи всегда. Метка также может иметь на борту криптопроцессор и обеспечивать проверку подлинности или обмен секретными данными. Изучается вопрос добавления RFID меток к банкноты как дополнительная мера защиты.

В будущем возможно все продукты будут снабжены RFID метками на стадии производства, а холодильник RFID считывателем. Тогда взяв вечером спросонья из холодильника пакет молока он молвит человеческим голосом “Сдурел? Выкинь, оно во мне уже пол года лежит, испортилось давно”.

Примеры

Екарта – проездная карточка на все виды транспорта в г.Екатеринбурге. Представляет собой карточку Mifare. Внешний вид:

Немного ацетоновых ванн и видно катушку индуктивности по периметру. Система полностью децентрализованная и информация о количестве денег хранится на самой карте в зашифрованном виде.

Московский метрополитен. Конструкция попроще для удешевления, карточка одноразовая:

Брелок от домофона “Факториал”

Внутри тоже RFID чип от Texas Instruments

При этом при каждом открывании двери данные в ключе перезаписываются, таким образом невозможно увеличить количество ключей. Копия будет работать, но после первого открывания перестанет работать оригинал, так как данные в ключе меняются. Этим хитрым апгрейдом факториал разом сделал бизнес копирования домофонных ключей невозможным.

Активные метки parsec

Представляют собой герметичный контейнер с микроконтроллером, батарейкой и радиомодулем, который посылает в эфир пару раз в секунду свой уникальный номер. Закрепив такой на автомобиле можно определять какие авто на данный момент сейчас находятся к примеру в гараже. Основная задача этих меток в автоматическом открывании ворот и шлагбаумов.

При этом вариант на последнем фото снабжен еще и пассивной меткой, можно повесить как брелок для ключей, и открывать не только ворота но и двери.

Правда безопасность автомобиля, основанная на наличии такой метки уязвима .

Если разберем ключ от автомобиля то найдем в нем чип иммобилайзера, который по сути тоже RFID метка:

Справа на крышке. Надежность и секретность механических замков ограничивается точностью механической обработки и достигла своего предела. Электронные замки и ключи имеют значительно большее число комбинаций.

RFID метки могут внедряться на стадии производства, например гитар:

Производитель таким образом не только облегчает себе отслеживание продукции на складах, но и гарантирует себе способ отличить свою продукцию от подделок.

Вот шапка с RFID меткой пришитой при производстве:

Еще одна от куртки:

Немного растворителей и достаем метки:

Отдельного слова заслуживают так называемые противокражные метки, или 1-битные транспондеры. Это RFID метка которая передает всего 1 бит – информацию о своем наличии. Такие метки используются для защиты товара от краж. Я про одну такую. Чаще всего встречаются метки электромагнитной системы (метка – колебательный контур), и акустомагнитной. Метки других типов в наших краях встречаются редко.

Если вы параноик

Возможно вам пригодится RFID Zapper . Перманентно отключить метку можно также в микроволновке, просто включив на пару секунд. Пассивные метки считываются на расстоянии в несколько метров (для LF и HF вообще не более 20 см). Что бы считать метку на расстоянии 100 метров в считыватель придется закачивать неприлично большие мощности.

RFID (Radio Frequency Identification) — это способ обеспечения хранения и передачи информации из удобного носителя-метки в нужное место, с помощью специальных устройств. Такие метки-идентификаторы позволяют облегчить распознавание различных объектов: товаров в магазине, подвижных средств при транспортировке, помогают определять их местоположение, могут идентифицировать людей и животных, не говоря уже о широких возможностях идентификации документов и имущества.

Что такое RFID-метка

Принимаемая RFID-меткой от антенны электромагнитная волна активизирует ее, и становятся возможными как запись данных на метку, так и считывание данных с метки. Антенна служит таким образом многофункциональным каналом связи между приемопередатчиком и меткой, полностью обеспечивающим процессы передачи и получения данных.

Антенны различных форм и размеров могут встраиваться в сканеры, ворота, турникеты, - в разные средства для работы с RFID-метками, с целью обеспечения доступа к информации, хранящейся в метках товаров, предметов, людей, транспорта и т. д. - всего, что перемещается через зону действия антенны сканера, и имеет на себе RFID-метку.

Антенна может непрерывно работать и постоянно считывать метки в большом количестве, все время опрашивая их, либо может включаться на некоторое время по сигналу от оператора. Антенна с приемопередатчиком и декодером часто находятся в одном общем корпусе, чтобы сигнал от антенны сразу бы демодулировался, расшифровывался и передавался бы через стандартный интерфейс на ПК для дальнейшей обработки полученных данных.

Сама метка обычно содержит в себе антенну, приемник, передатчик, и память для хранения данных. Энергию метка получает из радиосигнала антенны считывателя или от собственного источника питания, после получения внешнего сигнала, метка отвечает собственным сигналом, в котором содержится определенная идентификационная информация. Таким образом RFID-метки — это своего рода этикетки, только более умные.

Запись информации на RFID-метку

На метку информация может быть записана разными способами, в зависимости от конструкции метки. Так, RFID-метки могут быть следующих типов:

    R/O - метки только для считывания (Read Only), когда данные заносятся на стадии изготовления метки, и больше не изменяются;

    WORM - метки для однократной записи и последующего многократного считывания (Write Once Read Many), в такие метки на производстве не заносят никаких данных, информация записывается пользователем единожды, затем может многократно считываться;

    R/W - метки для многократной записи и последующего многократного считывания информации (Read/Write).

Пассивные и активные RFID-метки

Пассивная RFID-метка способна работать без собственного источника энергии, она получает энергию для питания только от сигнала сканера. Такие метки меньше по размеру чем активные, легче по весу, дешевле в производстве, и отличаются неограниченным сроком эксплуатации — это их главное достоинство.

Условный недостаток пассивной RFID-метки — необходимо устройство считывания достаточно большой мощности. Активная метка отличается наличием встроенной батареи или потребностью в присоединяемой батареи.

Такие метки взаимодействуют с антенной сканера на большем расстоянии чем пассивные метки, поскольку им требуется меньше мощности от антенны в процессе работы — это главное достоинство активных меток, они отличаются дальностью считывания в 2-3 раза большей, чем пассивные метки, к тому же активная метка может двигаться с высокой скоростью через зону действия сканера, и все равно успеет сработать.

Как пассивные, так и активные метки по возможностям записи/считывания, однократной/многократной, - могут широко различаться независимо от способа питания.

Приемник, передатчик, антенна и блок памяти — вот основные части RFID-метки. Все кроме антенны помещается в корпус маленькой микросхемы — чипа, поэтому с виду может показаться что метка состоит лишь из многовитковой антенны и чипа. В активных метках есть еще одна часть — источник питания, литиевая батарейка например.

Преимущества RFID-меток перед графическими идентификаторами

Штрих-код печатается всего один раз на стадии производства и упаковки, а информация на RFID-метке может быть не только полностью изменена, но и дополнена. Метки могут считываться сразу в большом количестве благодаря механизму антиколлозии, чего сложно достичь для графических кодов.

Несмотря на то что матричные коды способны вмещать относительно большие объемы данных, им требуются большие площади для нанесения кодов, например чтобы штрих-кодом записать 50 байт, потребуется лист формата А4, в то время как RFID-метка с чипом площадью всего 1 квадратный сантиметр легко вместит 1000 байт.

Запись на метку достаточно быстра, а графические коды нужно сначала набирать, затем печатать и наклеивать, да еще и сохранить целостность изображения.

С RFID-идентификаторами все проще, достаточно на стадии производства «имплантировать» метку в упаковку (не обязательно снаружи), затем бесконтактным способом записать данные, и метка будет вечной (не менее 1000000 взаимодействий с антенной сканера), скрытой внутри изделия метке не страшны ни грязь, ни пыль.

К тому же данные записанные на метку, целиком или частично, можно при необходимости защитить от считывания или перезаписи паролем — это надежный способ защиты от подделок. При этом считывание происходит при любом положении метки в зоне действия сканера — это удобнее чем графический код, который нужно ровно поднести к сканеру.

Частоты в зависимости от области применения

Там где требуется высокая скорость считывания, к примеру для контроля автомобилей в движении, вагонов на железной дороге, в системах сбора отходов — используют высокие частоты 850-950 МГц и 2,4-5 ГГц. Высокочастотные сканеры монтируются в ворота или шлагбаумы, а RFID-метка (транспондер) устанавливается, например, на лобовом стекле автомобиля. Дальность взаимодействия метки со сканером составляет от 4 до 8 метров, что создает благоприятные условия для людей, поскольку считывающее устройство располагается вне их досягаемости.

В настоящее время очень популярен среднечастотный диапазон 10-15 МГц. Он используется в транспортных и других аналогичных приложениях, где требуется работа с перезаписываемыми картами, смарт-картами и т. д. Многие нынешние смарт-карты работают как раз как RFID-метки средневолнового диапазона.

Диапазон низких частот 100-500 Кгц действует на небольшом расстоянии между сканером и объектом, не более 50 см, иногда меньше 10 см.

Большая антенна компенсирует небольшую дальность взаимодействия, однако помехи от высоковольтных линий, компьютеров и даже энергосберегающих ламп могут помешать работе системы. Но все равно во многих системах управления доступом (склады, проходные) низкие частоты для работы с бесконтактными RFID-картами применяются. Кроме того низкочастотный диапазон используется для бесконтактной идентификации животных и металлических предметов, таких например как пивные кеги.

Уже известные приложения RFID (бесконтактные карты в системах контроля и управления доступом, системах дальней идентификации и в платёжных системах) получают дополнительную популярность с развитием интернет -услуг.

История RFID-меток

Технология, наиболее близкая к данной - система распознавания «свой-чужой» IFF (Identification Friend or Foe), изобретённая Исследовательской лабораторией ВМС США в 1937 году . Она активно применялась союзниками во время Второй мировой войны, чтобы определить, своим или чужим является объект в небе. Подобные системы до сих пор используются как в военной, так и в гражданской авиации.

Ещё одной вехой в использовании RFID-технологии является послевоенная работа Гарри Стокмана (Harry Stockman ) под названием «Коммуникации посредством отражённого сигнала» (англ. "Communication by Means of Reflected Power" ) (доклады IRE , стр. 1196-1204, октябрь 1948) . Стокман отмечает, что «…значительные работы по исследованию и разработке были сделаны до того, как были решены основные проблемы в связи посредством отражённого сигнала, а также до того, как были найдены области применения данной технологии» .

Первая демонстрация современных RFID-чипов (на эффекте обратного рассеяния), как пассивных, так и активных, была проведена в Исследовательской лаборатории Лос-Аламоса (англ. Los Alamos Scientific Laboratory ) в 1973 году . Портативная система работала на частоте 915 МГц и использовала 12-битные метки.

Классификация RFID-меток

Существует несколько способов систематизации RFID-меток и систем :

По источнику питания

По типу источника питания RFID-метки делятся на :

  • Пассивные
  • Активные
  • Полупассивные

Пассивные

Пассивные RFID-метки не имеют встроенного источника энергии . Электрический ток , индуцированный в антенне электромагнитным сигналом от считывателя, обеспечивает достаточную мощность для функционирования кремниевого КМОП -чипа, размещённого в метке, и передачи ответного сигнала.

Коммерческие реализации низкочастотных RFID-меток могут быть встроены в стикер (наклейку) или имплантированы под кожу (см. VeriChip).

Компактность RFID-меток зависит от размеров внешних антенн, которые по размерам превосходят чип во много раз и, как правило, определяют габариты меток. Наименьшая стоимость RFID-меток, которые стали стандартом для таких компаний, как Wal-Mart , Target , Tesco в Великобритании, Metro AG в Германии и Министерства обороны США , составляет примерно 5 центов за метку фирмы SmartCode (при покупке от 100 млн штук) . К тому же, из-за разброса размеров антенн, и метки имеют различные размеры - от почтовой марки до открытки. На практике максимальная дистанция считывания пассивных меток варьируется от 10 см (4 дюймов) (согласно стандарту ISO 14443) до нескольких метров (стандарты EPC и ISO 18000-6), в зависимости от выбранной частоты и размеров антенны. В некоторых случаях антенна может быть изготовлена печатным способом.

Производственные процессы от Alien Technology под названием Fluidic Self Assembly , от SmartCode - Flexible Area Synchronized Transfer (FAST) и от Symbol Technologies - PICA направлены на дальнейшее уменьшение стоимости меток за счёт применения массового параллельного производства. Alien Technology в настоящее время использует процессы FSA и HiSam для изготовления меток, в то время как PICA - процесс от Symbol Technologies - находится ещё на стадии разработки. Процесс FSA позволяет производить свыше 2 миллионов ИС пластин в час, а PICA процесс - более 70 миллиардов меток в год (если его доработают). В этих технических процессах ИС присоединяются к пластинам меток, которые в свою очередь присоединяются к антеннам, образуя законченный чип. Присоединение ИС к пластинам и в дальнейшем пластин к антеннам - самые пространственно чувствительные элементы процесса производства. Это значит, что при уменьшении размеров ИС-монтаж (англ. Pick and place ) станет самой дорогой операцией. Альтернативные методы производства, такие как FSA и HiSam, могут значительно уменьшить себестоимость меток. Стандартизация производства (англ. Industry benchmarks ) в конечном счёте приведёт к дальнейшему падению цен на метки при их широкомасштабном внедрении.

Некремниевые метки могут изготавливаться из полимерных полупроводников . В настоящее время их разработкой занимаются несколько компаний по всему миру. Метки, изготавливаемые в лабораторных условиях и работающие на частотах 13,56 МГц, были продемонстрированы в 2005 году компаниями PolyIC (Германия) и Philips (Голландия). В промышленных условиях полимерные метки будут изготавливаться методом прокатной печати (технология напоминает печать журналов и газет), в результате чего они будут дешевле, чем метки на основе ИС. В конечном счёте это может закончиться тем, что для большинства сфер применения метки станут печатать так же просто, как и штрих-коды , и они станут такими же дешёвыми.

Активные метки обычно имеют гораздо больший радиус считывания (до 300 м) и объём памяти, чем пассивные, и способны хранить больший объём информации для отправки приёмопередатчиком.

Полупассивные

Полупассивные RFID-метки, также называемые полуактивными, очень похожи на пассивные метки, но оснащены батареей, которая обеспечивает чип энергопитанием . При этом дальность действия этих меток зависит только от чувствительности приёмника считывателя и они могут функционировать на большем расстоянии и с лучшими характеристиками.

По типу используемой памяти

По типу используемой памяти RFID-метки делятся на :

  • RO (англ. Read Only ) - данные записываются только один раз, сразу при изготовлении. Такие метки пригодны только для идентификации. Никакую новую информацию в них записать нельзя, и их практически невозможно подделать.
  • WORM (англ. Write Once Read Many ) - кроме уникального идентификатора такие метки содержат блок однократно записываемой памяти, которую в дальнейшем можно многократно читать.
  • RW (англ. Read and Write ) - такие метки содержат идентификатор и блок памяти для чтения/записи информации. Данные в них могут быть перезаписаны многократно.

По рабочей частоте

Метки диапазона LF (125-134 кГц)

Пассивные системы данного диапазона имеют низкие цены и в связи с физическими характеристиками используются для подкожных меток при чипировании животных и людей. Однако, в связи с длиной волны, существуют проблемы со считыванием на большие расстояния, а также проблемы, связанные с появлением коллизий при считывании.

Метки диапазона HF (13,56 МГц)

Системы 13 МГц дешевы, не имеют экологических и лицензионных проблем, хорошо стандартизованы, имеют широкую линейку решений. Применяются в платежных системах, логистике, идентификации личности. Для частоты 13,56 МГц разработан стандарт ISO 14443 (виды A/B). В отличие от Mifare 1К, в данном стандарте обеспечена система диверсификации ключей, что позволяет создавать открытые системы. Используются стандартизованные алгоритмы шифрования.

На основе стандарта 14443 В разработано несколько десятков систем, например, система оплаты проезда общественного транспорта Парижского региона.

Для существовавших в данном диапазоне частот стандартов были найдены серьёзные проблемы в безопасности: совершенно отсутствовала криптография у дешёвых чипов карты Mifare Ultralight , введённая в использование в Нидерландах для системы оплаты проезда в городском общественном транспорте OV-chipkaart , позднее была взломана считавшаяся более надёжной карта Mifare Classic .

Как и для диапазона LF, в системах, построенных в HF-диапазоне, существуют проблемы со считыванием с больших расстояний, считывание в условиях высокой влажности, наличия металла, а также проблемы, связанные с появлением коллизий при считывании.

Метки диапазона UHF (860-960 МГц)

Метки данного диапазона обладают наибольшей дальностью регистрации, во многих стандартах данного диапазона присутствуют антиколлизионные механизмы . Ориентированные изначально для нужд складской и производственной логистики, метки диапазона UHF не имели уникального идентификатора. Предполагалось, что идентификатором для метки будет служить EPC-номер (Electronic Product Code ) товара, который каждый производитель будет заносить в метку самостоятельно при производстве. Однако скоро стало ясно, что помимо функции носителя EPC-номера товара хорошо бы возложить на метку ещё и функцию контроля подлинности. То есть возникло требование, противоречащее самому себе: одновременно обеспечить уникальность метки и позволить производителю записывать произвольный EPC-номер.

Долгое время не существовало чипов, которые бы удовлетворяли этим требованиям полностью. Выпущенный компанией Philips чип Gen 1.19 обладал неизменяемым идентификатором, но не имел никаких встроенных функций по паролированию банков памяти метки, и данные с метки мог считать кто угодно, имеющий соответствующее оборудование. Разработанные впоследствии чипы стандарта Gen 2.0 имели функции паролирования банков памяти (пароль на чтение, на запись), но не имели уникального идентификатора метки, что позволяло при желании создавать идентичные клоны меток.

Наконец, в 2008 году компания NXP выпустила два новых чипа , которые на сегодняшний день отвечают всем выше перечисленным требованиям. Чипы SL3S1202 и SL3FCS1002 выполнены в стандарте EPC Gen 2.0 , но отличаются от всех своих предшественников тем, что поле памяти TID (Tag ID ), в которое при производстве обычно пишется код типа метки (и он в рамках одного артикула не отличается от метки к метке), разбито на две части. Первые 32 бита отведены под код производителя метки и её марку, а вторые 32 бита - под уникальный номер самого чипа. Поле TID - неизменяемое, и, таким образом, каждая метка является уникальной. Новые чипы имеют все преимущества меток стандарта Gen 2.0. Каждый банк памяти может быть защищен от чтения или записи паролем, EPC-номер может быть записан производителем товара в момент маркировки .

В UHF RFID-системах по сравнению с LF и HF ниже стоимость меток, при этом выше стоимость прочего оборудования.

В настоящее время частотный диапазон УВЧ открыт для свободного использования в Российской Федерации в так называемом «европейском» диапазоне - 863-868 МГЦ.

Радиочастотные UHF-метки ближнего поля

По сравнению с переносными, считыватели такого типа обычно обладают большей зоной чтения и мощностью и способны одновременно обрабатывать данные с нескольких десятков меток. Стационарные считыватели подключаются к ПЛК , интегрируются в DCS или подключаются к ПК. Задача таких считывателей - поэтапно фиксировать перемещение маркированных объектов в реальном времени, либо идентифицировать положение меченых предметов в пространстве .

Мобильные

Обладают сравнительно меньшей дальностью действия и зачастую не имеют постоянной связи с программой контроля и учёта. Мобильные считыватели имеют внутреннюю память, в которую записываются данные с прочитанных меток (потом эту информацию можно загрузить в компьютер) и, как и стационарные считыватели, способны записывать данные в метку (например, информацию о произведённом контроле) .

В зависимости от частотного диапазона метки, дистанция устойчивого считывания и записи данных в них будет различна.

RFID и альтернативные методы автоматической идентификации

Из всем полюбившейся (по крайней мере, я на это очень надеюсь) серии «Взгляд изнутри» - больше полугода. Не то, чтобы не было, о чём написать или рассказать, просто одолели дела, которые станут предметом одной из следующих моих статей на Хабре (надеюсь, что её не отправят в утиль, так как посвящена она будет не совсем ИТ-тематике). А пока есть свободная минуточка, давайте разберёмся, что же такое RFID (Radio-frequency identification) – к ним примкнут более простые метки – или как один небольшой шаг в технологиях круто изменил жизнь миллионов и даже миллиардов людей по всему миру.

Предисловие

Сразу хотелось бы оговориться.

Перед началом работы над этой статьёй, я очень надеялся, что по микрофотографиям, а особенно по оптике, информации, найденной на просторах Интернета, и некоторому багажу знаний от прошлых публикаций удастся определить, где и какие элементы микросхемы находятся. Хотя бы на «бытовом» уровне: мол, вот это - память, вот это - схема питания, а вот тут происходит обработка информации. Действительно, казалось бы, RFID – простейшее устройство, самый простейший «компьютер», который только можно придумать…

Однако жизнь внесла свои коррективы и всё, что удалось мне найти: общая схема устройства нового поколения меток , фотографии того, как, например, должна выглядеть память – даже не знаю, почему я не уделил этому внимание (может быть ещё представится возможность исправиться?!), ну и скандалы-интриги-разоблачения процессоров A5 от chipworks .

Часть теоретическая

По традиции начнём с некоторой вводной части.
RFID
История технологии радиочастотного распознавания – пожалуй, именно так можно назвать все мыслимые и немыслимые варианты RFID (radio-frequency identification) – уходит своими корнями в 40-ые года XX века, когда в СССР, Европе и США активно велись разработки вообще любых видов электронной техники.

В то время, любое изделие, работающее на электричестве, было всё ещё в диковинку, так что перед учёными лежало не паханое поле: куда не ткни, как в Черноземье, черенок от лопаты – вырастет дерево. Судите сами: свои законы Максвелл предложил всего-навсего полвека назад (в 1884 году). А теории на основе этих уравнений стали появляться спустя 2-3 десятилетия (между 1900 и 1914), в том числе и теории радиоволн (от их открытия, до моделей модуляции сигнала и т.д.). Плюс подготовка и ведение второй мировой войны наложили свой отпечаток на данную область.

В результате к концу 40-х годов были разработаны системы распознавания «свой-чужой», которые были несколько побольше, чем описанные , но работали фактически по тому же принципу, что и современные RFID-метки.

Первая демонстрация близких к современных RFID была проведена в 1973 году в Исследовательской Лаборатории Лос Аламоса, а один из первых патентов на подобного рода систему идентификации получен спустя десятилетие – в 1983 году. Более подробно с историей RFID можно ознакомиться на Wiki и некоторых других сайтах ( и ).

Активные метки за счёт встроенной батарейки имеют существенно больший радиус работы, габариты, более сложную «начинку» (можно дополнить метку термометром, гигрометром, да хоть целый чип GPS-позиционирования) и соответствующую цену.

Классифицировать метки можно по-разному: по рабочей частоте (LF – низкочастотные ~130КГц, HF – высокочастотные ~14MГц и UHF – ультравысокочастотные ~900МГц), по типу памяти внутри метки (только чтение, однократно записываемая и многократно записываемая). Кстати, так любимый всеми производителями и продвигаемый NFC относится к HF диапазону, который имеет ряд хорошо известных проблем.

Прочие метки
К сожалению, стоимость RFID-меток по сравнению с другими видами идентификации довольно высока, поэтому, например, продукты питания и прочие «ходовые» товары мы по-прежнему покупаем с помощью баркодов (или штрих-кодов), иногда QR-кодов, а защиту от краж обеспечивают так называемые противокражные метки (или EAS – electronic article surveillance)

Самых распространённых три вида (все фото взяты с Wiki):

Впереди нас ждёт много чудных открытий, подчас совершенно неожиданных и конечно же hard geek porn в формате HD !

Если кому-то показалось мало теории, добро пожаловать на данный англоязычный сайт .

Часть практическая

Итак, какие метки удалось найти в окружающем нас мире:


Левый столбец сверху вниз: карта московского метро, проездной аэроэкспресс, пластиковая карта для прохода в здание, RFID-метка, представленная компанией Перекрёсток на выставке РосНаноФорум-2011. Правый столбец сверху вниз: радиочастотная EAS-метка, акустомагнитная EAS-метка, бонусный билет на общественный транспорт Москвы с магнитной полосой, RFID-карта посетителя РосНаноФорума содержит даже две метки.

Первой заявлена карточка московского метрополитена – приступим.

В круге первом. Билет московского метрополитена
Сначала вымачиваем карту в обычной воде, чтобы удалить бумажные слои, скрывающие самое сердце данной «метки».


Раздетая карта московского метрополитена

Теперь аккуратненько посмотрим на неё при небольшом увеличении в оптический микроскоп:


Микрофотографии чипа карты для прохода в московский метрополитен

Чип закреплён довольно основательно и хочу обратить внимание, что все 4 «ноги» присоединены к антенне – это нам пригодится далее для сравнения с другой RFID-меткой. Сложив пластиковую основу пополам в месте, где находится чип, и слегка покачав из стороны в сторону, он легко высвобождается. В итоге имеем чип размером с игольчатое ушко:


Оптические микрофотографии чипа сразу после отделения от антенны

Что ж, поиграемся с фокусом:


Изменение положения фокуса с нижнего слоя на верхний

Теперь немного интриг.

Ходят слухи, что Микрон разрабатывает и производит чипы для московского метро собственного силам по сходной технологии Mifare (как минимум, различается крепление к антенне – ножки другой формы). 22 августа без объявления войны и вероломно направил обращение в Микрон за разъяснениями, можно ли где-то в принципе увидеть данный чип, к 3.11 ответа не поступило. Один из журналистов (а именно, Александр Эрлих) на форуме IXBT тоже собирался уточнить данную информацию у представителей Микрона, но на данный момент воз и ныне там, то есть официальные представители Микрон уклоняются от ответа на прямо поставленный вопрос.

Рассмотренный выше билет, по всей видимости, изготовлен (или только смонтирован на антенну?) на предприятии Микрон (г. Зеленоград) - см. ссылки ниже - по технологии известной в RFID-кругах фирмы NXP, о чём собственно недвусмысленно намекают 3 огромные буквы и год выпуска технологии (а может и год производства) на верхнем слое металлизации чипа. Если полагать, что 2009 относится к году запуска технологии, а аббревиатуру CUL1V2 расшифровать как Circuit ULtralite 1 Version 2 (данное предположение также подтверждается этой новостью), то на сайте NXP можно найти подробное описание данных чипов (последние две строки в списке)

Кстати, в прошлом году для участников Интернет-олимпиады по Нанотехнологиям была организована экскурсия на завод Микрон (фото- и видео отчёты), поэтому говорить, что там оборудование простаивает смысла нет, но и заявление «дядечки в белом халате», что производят они метки по стандартам 70 нм, я бы поставил под сомнение…

Согласно статистике, собранной после анализа чипов 109 билетов метро (довольно репрезентативная выборка), согласно нормальному распределению шансы найти «необычный» билет ~109^1/2 или около 10%, но они тают с каждым вскрытым билетиком…

Внимательный взгляд уже приметил главное отличие двух чипов Mifare – надпись Philips2001. В самом деле, в далёком 1998 году компания Philips купила американского производителя микроэлектроники – Mikron (не путать с нашим, зеленоградским Микроном). А в 2006 году от Philips отпочковалась компания NXP.

Также несложно заметить пометку CLU1V1C, что, исходя из вышеописанного, означает Circuit ULtralite 1 Version 1C. То есть эта метка является предшественницей Mifare, используемой московским метрополитеном, а, следовательно, совместима с ней по основным параметрам. Однако, как и в предыдущем случае 2001 – это указание на год разработки и внедрения технологии или год производства. Странно, что Аэроэкспресс использует устаревшие метки…

В круге третьем. Пластиковая карта
Как-то раз, решил я одной своей знакомой показать статьи и фотографии на Хабрахабре. После чего спросил, а есть ли у неё какая-нибудь ненужная карта для следующей статьи про RFID. Она к тому времени как раз перебралась учиться в EPFL и подарила мне карточку, по которой осуществляется проход в одно из зданий МГУ. Карта, соответственно, без какой-либо маркировки, и я даже не уверен, что на ней записано хоть что-то, кроме обычно ключа для прохода в здание.
Карточка полностью пластиковая, поэтому сразу кладём её в ацетон буквально на пару десятков минут:


Принимаем ацетоновые ванны

Внутри всё довольно стандартно – антенна да чип, правда, он оказался на маленьком кусочке текстолита. К сожалению, без каких-либо опознавательных знаков – типичный китайский noname. Единственное, что можно узнать об этом чипе и карте, что они изготовлены/относятся к некоторому стандарту TK41. Таких карт полно на распродажах типа ali-baba и dealextreme.

В круге четвёртом. Перекрёсток
Далее я хочу рассмотреть две метки, представленные на выставке РосНаноФорум 2011. Первую из них представили с большим пафосом, сказав, что это чуть ли не панацея от воров и краж в магазинах. Да и вообще, данная метка позволит полностью перевести магазины на самообслуживание. К сожалению, эффективный менеджер оказался чуть более, чем полностью некомпетентен в вопросах школьной физики. И после предложение проверить эффективность его и метки с помощью сильного магнита, приложенного к метке, быстро замял тему…

После пары покупок в SmartShop, у меня в распоряжении осталось несколько меток. Очистив одну из них от клея и белого защитного слоя видим следующее:


Новая метка сети магазинов «Перекрёсток»

Поступаем так же как и Mifare аккуратно отсоединяем от полимерной основы и антенны и кладём на столик оптического микроскопа:


Оптические микрофотографии метки, предполагаемой к использованию в SmartShop

По счастливой случайности (то ли клей подкачал, то ли так задумано), метку удалось оторвать от основы быстро, а поверхность её осталась без каких-либо следов клея. Хотелось бы обратить внимание, что если у Mifare все 4 контакта прикреплены к антенне (по 2 контакта на каждый её конец), то здесь мы видим, что два контакта присоединены к двум небольших площадкам, которые не контактирую с антенной.

Немножко поиграем с фокусом в разных частях метки:


Меняем фокусировку…


Максимальное увеличение оптического микроскопа

На последнем фото слева вверху, по всей видимости, запечатлён модуль EEPROM памяти, так как он занимает около трети поверхности чипа и имеет «регулярную» структуру.

  • IT-инфраструктура ,
  • Стандарты связи
  • RFID-метка для пациентов, чтобы их было видно на карте больницы

    - А можете каждому строителю чип в голову вшить?
    - Теоретически да, но, может быть, объясните, зачем вам это нужно?
    - Они у нас стройматериалы воруют. Прямо во время работ. А так каждого будет видно, куда он там зашёл, куда не надо.

    Проект решился вшиванием в форменную одежду RFID-метки, разделением стройки на зоны и дальше тем, что делается в сети при построении периметра. То есть построением профиля «белого» трафика - кто, куда и когда ходит. А потом - как на файрволле - запретили строителям всё остальное. Кражи сразу сократились. Прораб получил потустороннюю силу и видел почти каждый косяк.

    А дальше каждый чёртов раз, когда я рассказываю про RFID-решение, люди начинают махать руками и путать эти метки с Wi-Fi, Bluetooth и пассивными резонирующими контурами. Одна из причин - некоторые RFID-метки действительно работают по Wi-Fi 802.11. Давайте расскажу, как это используется на практике в разных странах.

    Пассивные и активные RFID

    Есть два вида RFID-меток. Первые - те, которые не имеют собственного бортового питания и просто резонируют в магнитном поле. Такие вы чаще всего видите в магазинах от книжного до одежды, и даже на колбасе в продуктовом. Они очень дешёвые, маленькие и надёжные, если у злоумышленника нет сумки, сплётённой из проволоки по принципу клетки Фарадея.


    Пассивные метки

    Активные радиометки - это уже не резонирующий, а самостоятельно излучающий контур. Трансляция сигнала идёт постоянно и на существенно большее расстояние. Активные метки дороже, больше, но зато могут отдавать большее количество данных. Активные метки, очевидно, куда проще считывать - соответственно, сами считыватели будут на два порядка меньше и на порядок менее требовательными к питанию.


    Активные метки

    Обычная дальность сработки для пассивной метки - 3 метра, для активной - 100–500 метров.

    «Большие» активные метки, чтобы два раза не вставать, снабжают и разными сенсорами. Возможность непрерывного мониторинга и передачи в радиоэфир сигнала даёт возможность вещать уровень температуры, влажности, оповещать о толчках и ударах, уровне вибрации, показывать уровень освещённости, загазованности (в том числе качественно, например, только по углекислоте), вещать уровень радиации. И писать логи во внутреннюю память - 512 килобайт уже не кажутся фантастикой.

    Перечисленные метки очень активно применяются на разных производствах.

    RFID over Wi-Fi 802.11

    Теперь мы добрались до самых интересных и крупных RFID-меток. Это 802.11-совместимые радиоустройства, которые вещают на частотах от 2,4 до 2,4835 ГГц или 5,8 ГГц до 5,825 - в тех самых «бытовых» диапазонах. А прелесть их в в том, что они «из коробки» являются полноценными частями Wi-Fi-инфраструктуры и не требуют никаких промежуточных протоколов или интерфейсов для общения.


    Не все поддерживают 5GHz - например, эта 802.11 b/g/n, 2.4GHz

    Пациенты далеко не уйдут

    Метка как на картинке сверху поста внедрялась в иностранном госпитале. Её цепляли пациентам на пояс. Она передаёт базовую телеметрию без дополнительных примочек - просто положение пациента (в случае больницы - ближайший излучатель, соответствующий палате или коридору). Если на неё надавить пальцем по углублению, то можно вызвать сестру, если надавить сильно или упасть лицом в пол вместе с меткой - вместо сестры прибежит сразу врач.

    Она 802.11 b/g/n, мощность сигнала омниантенны +11.5dBm, 2.4 - 2.4835 GHz, протокол - UDP/IP или DHCP, заявлено 16 Мбит/с на 40 метров, 6 Мбит/c на 100 метров. Защита Open/WPA2, батарейка не извлекается, на морозе умирает через сутки-двое, есть некий класс защиты от дождя. Размер - примерно как таракан из «Пятого элемента», 3х5 сантиметров и чуть меньше сантиметра в высоту. Весит 2 грамма (столько крови в мышке-полёвке). Сзади клипса или липучка.

    Больница в Канаде поставила эти метки и на персонал тоже - просто посмотреть, что можно сделать дальше. Выяснилось, что с помощью таких вещей можно очень повысить безопасность выполнения разных процедур, оптимизировать потоки пациентов, упростить работу по ведению журнала для охраны, мониторить всякие разные параметры с внешних датчков. Лучшая история - противный писк, если не вымыть руки, когда пришёл из «грязной» зоны.

    Финал - внедрение меток на всё ценное оборудование. Начали просто с быстрого поиска предметов вроде коек, носилок и инвалидных кресел, но потом поняли, что можно снимать телеметрию с приборов. И подключили к уведомлениям а-ля Zabbix все медицинские мониторы, аппараты ИВЛ и т. п.

    Поиск халявщиков на производстве

    Ещё одно интересное внедрение делалось на американском производственном комплексе. Для начала каждый контейнер и каждая отдельная учётная единица (палета или ящик) снабжались пассивной RFID-меткой, для того чтобы вести точный учёт продукции и знать, что и как расходуется. Уже одно это несколько уменьшило, как написали в отчёте, «непроизводственные потери» - похоже, у них в Америке так же весело воруют, как и на привычных нам заводах.

    Затем метки повесили на форму рабочих - это сделано по требованиям безопасности труда. На части меток - функция «одинокий рабочий», когда нужно двигаться или теребить метку раз в 5–10 минут. Не сделал - она противно пищит, а через 15 секунд отправляется SOS.

    Затем, отслеживая потоки рабочих и материалов, аналитики производства стали искать проблемы. Нашли пару ручных процедур, которые совершенно не нужны были на заводе, автоматизировали часть процессов, разгрузили внутреннюю логистику за счёт правильного расположения складов и правильного учёта смен. В общем, смогли сделать так, чтобы рабочие не простаивали и не ждали чего-то, а постоянно работали. На последней стадии собирались делать интеграцию для автоматического назначения задач работникам в реальном времени (на момент внедрения это делалось в начале смены).

    И финал - автоматизация журналов учёта транспорта и материалов, быстрые инвентаризации и контроль остатков.

    В школе

    Для одной американской же школы внедряли RFID+Wi-Fi весьма оригинальным способом. У каждого ученика - обычная Wi-Fi-совместимая метка, а у учителей - небольшие Wi-Fi-терминалы с возможностью отправки и приёма сообщений.


    На базе ARiSTA Flow

    Директор школы может отправлять сообщения учителям, а учителя могут реагировать записанными шаблонами вроде «понял», «срочно подойдите» и т. п. Эта же система включается по пожарной тревоге и другим ЧС - учителя получают информацию о том, куда надо выводить класс, то есть фактически маршрут эвакуации.

    В каждом классе стоит считыватель (точка доступа Wi-Fi), который «видит» и пересчитывает учеников. Журнал посещаемости формируется автоматически. Школьный интранет подключён к серверу, который смотрит в большой Интернет, и родители могут логиниться с приложения или прямо через web-форму и смотреть, в каком месте школы сидят их дети, и заодно - дневники.

    Самое интересное сделано в школьном автобусе, который собирает детей по району. Дети с метками садятся в автобус, а там установлена почти такая же функциональная инфраструктура, и родители могут убедиться, что ребёнок нормально сел, и видеть автобус на карте (он отдаёт координаты своего GPS-датчика).

    Учители стали вешать отдельные метки ещё на проекторы и другое оборудование, чтобы знать, где оно находится точно, поэтому в проекте ещё разметка инвентаря школы.

    Как это выглядит

    Один из примеров решения - RFID over Wi-Fi Cisco.

    Mobility Services Engine (MSE) агрегирует данные об уровне сигнала от всех беспроводных устройств и отправляет их на приложение MobileViewс. MSE также предоставляет богатый набор функций, начиная с безопасности - Cisco CleanAir, обнаружение местоположения несанкционированных устройств, системы предотвращения вторжений через Wi-Fi (wIPS) и аналитика местоположения.

    Или MobileView - это веб-приложение для отображения отслеживания перемещений активов, включая сообщения тревоги, основанные на перемещениях по заданным зонам.

    RFID-метки с телеметрией, кнопками вызова, датчиками температуры и влажности.

    Вот метки персонала:

    Range Outdoor range: Up to 200m (650 feet) Indoor range: Up to 80m (260 feet)
    Physical and Mechanical Dimensions (incl. Flange): 80mm x 40.6mm x 20mm (3.14in x 1.60in x 0.8in) Total Weight (Incl. Retractable reel): 53g (1.86oz). Radio 802.11 b/g/n compliant (2.4 GHz) Low frequency receiver for chokepoint detection (125kHz) Transmission power: up to +19dBm (~81mW) Patented clear channel sensing avoids interference with wireless networks. Ultrasound Receiver Frequency: 40KHz.

    Работает до 2 лет без замены батареи. Зависит от конфигурации в системе.
    Включает в себя ультразвуковой передатчик с частотой 40kHZ, данные сигналы распространяются только в пределах комнаты, что необходимо для точности работы системы обнаружения местонахождения. RFID-метка через ультразвук получает запрос от специального передатчика, который установлен в комнате, и отправляет ответ через Wi-Fi, определяя местоположение человека.

    Метки активов:

    45mm x 31mm x 18mm (1.7in x 1.2in x 0.7in) Weight: 26g (0.92oz), Radio 802.11 compliant (2.4 GHz) Low frequency receiver for chokepoint detection (125kHz) Transmission power: up to +19dBm (~81mW) Patented clear channel sensing avoids interference with wireless networks. Ultrasound Receiver (optional) Frequency 40KHz.

    В данной метке установлена батарея 3.6V с возможностью замены. Продолжительность работы - до 4 лет. Метка посылает информацию о заряде на систему MobileView. Метка оснащена сенсором движения, и в случае движения она начинает посылать сигнал на систему мониторинга. Интервал передачи настраивается в диапазоне от 1 секунды до 3,5 часов. Включает в себя ультразвуковой передатчик с частотой 40kHZ, данные сигналы распространяются только в пределах комнаты, что необходимо для точности работы системы обнаружения местонахождения. RFID-метка через ультразвук получает запрос от специального передатчика, который установлен в комнате, и отправляет ответ через Wi-Fi, определяя местоположение актива.

    Устройство настройки метки:


    Radio Wi-Fi 802.11 (2.4 GHz); b/g/n compliant* Bluetooth 4. 1 (2.4 GHz)* Low Frequency receiver (LF) 125kHz Transmission power: Up to +19dBm (~81mW). Это сенсор, данное устройство позволяет оперативно проводить конфигурацию RFID-меток.

    Ультразвуковой LF-передатчик (разные варианты):

    Ультразвуковой передатчик подключается к ЛВС и питается по PoE. Он постоянно отправляет запрос на частоте 40 KHz. На данной частоте сигнал распространяется только в пределах помещения, где установлен передатчик. Когда в помещении появляется активная RFID-метка, то она получает сигнал и производит передачу по Wi-Fi своих данных на систему мониторинга MobileView. Есть несколько видов LF-передатчиков, они отличаются дальностью передачи сигнала и возможностями для монтажа.

    Благодаря данным устройствам получается сохранить заряд на активных метках, потому что метка при выходе из зоны работы LF-передатчика может отключаться и перестать передавать информацию через Wi-Fi.

    В целом, надеюсь, стало чуть понятнее, как это работает. В России использование таких меток пока крайне мало распространено, но мы сейчас уже готовим первые крупные внедрения. Если есть вопросы не для публичного обсуждения, то моя почта - [email protected].