Делаем COM программатор для AVR микроконтроллеров. Программаторы AVR Чем является JTAG-программатор

Какие первые шаги должен сделать радиолюбитель, решивший собрать схему на микроконтроллере? Естественно, необходима управляющая программа - "прошивка", а также программатор.

И если с первым пунктом нет проблем - готовую "прошивку" обычно выкладывают авторы схем, то вот с программатором дела обстоят сложнее.

Цена готовых USB-программаторов довольно высока и лучшим решением будет собрать его самостоятельно. Вот схема предлагаемого устройства (картинки кликабельны).

Основная часть.

Панель установки МК.

Исходная схема взята с сайта LabKit.ru с разрешения автора, за что ему большое спасибо. Это так называемый клон фирменного программатора PICkit2. Так как вариант устройства является "облегчённой" копией фирменного PICkit2, то автор назвал свою разработку PICkit-2 Lite , что подчёркивает простоту сборки такого устройства для начинающих радиолюбителей.

Что может программатор? С помощью программатора можно будет прошить большинство легкодоступных и популярных МК серии PIC (PIC16F84A, PIC16F628A, PIC12F629, PIC12F675, PIC16F877A и др.), а также микросхемы памяти EEPROM серии 24LC. Кроме этого программатор может работать в режиме USB-UART преобразователя, имеет часть функций логического анализатора. Особо важная функция, которой обладает программатор - это расчёт калибровочной константы встроенного RC-генератора некоторых МК (например, таких как PIC12F629 и PIC12F675).

Необходимые изменения.

В схеме есть некоторые изменения, которые необходимы для того, чтобы с помощью программатора PICkit-2 Lite была возможность записывать/стирать/считывать данные у микросхем памяти EEPROM серии 24Cxx.

Из изменений, которые были внесены в схему. Добавлено соединение от 6 вывода DD1 (RA4) до 21 вывода ZIF-панели. Вывод AUX используется исключительно для работы с микросхемами EEPROM-памяти 24LС (24C04, 24WC08 и аналоги). По нему передаются данные, поэтому на схеме панели программирования он помечен словом "Data". При программировании микроконтроллеров вывод AUX обычно не используется, хотя он и нужен при программировании МК в режиме LVP.

Также добавлен "подтягивающий" резистор на 2 кОм, который включается между выводом SDA и Vcc микросхем памяти.

Все эти доработки я уже делал на печатной плате, после сборки PICkit-2 Lite по исходной схеме автора.

Микросхемы памяти 24Cxx (24C08 и др.) широко используются в бытовой радиоаппаратуре, и их иногда приходится прошивать, например, при ремонте кинескопных телевизоров. В них память 24Cxx применяется для хранения настроек.

В ЖК-телевизорах применяется уже другой тип памяти (Flash-память). О том, как прошить память ЖК-телевизора я уже рассказывал . Кому интересно, загляните.

В связи с необходимостью работы с микросхемами серии 24Cxx мне и пришлось "допиливать" программатор. Травить новую печатную плату я не стал, просто добавил необходимые элементы на печатной плате. Вот что получилось.

Ядром устройства является микроконтроллер PIC18F2550-I/SP .

Это единственная микросхема в устройстве. МК PIC18F2550 необходимо "прошить". Эта простая операция у многих вызывает ступор, так как возникает так называемая проблема "курицы и яйца". Как её решил я, расскажу чуть позднее.

Список деталей для сборки программатора. В мобильной версии потяните таблицу влево (свайп влево-вправо), чтобы увидеть все её столбцы.

Название Обозначение Номинал/Параметры Марка или тип элемента
Для основной части программатора
Микроконтроллер DD1 8-ми битный микроконтроллер PIC18F2550-I/SP
Биполярные транзисторы VT1, VT2, VT3 КТ3102
VT4 КТ361
Диод VD1 КД522, 1N4148
Диод Шоттки VD2 1N5817
Светодиоды HL1, HL2 любой на 3 вольта, красного и зелёного цвета свечения
Резисторы R1, R2 300 Ом
R3 22 кОм
R4 1 кОм
R5, R6, R12 10 кОм
R7, R8, R14 100 Ом
R9, R10, R15, R16 4,7 кОм
R11 2,7 кОм
R13 100 кОм
Конденсаторы C2 0,1 мк К10-17 (керамические), импортные аналоги
C3 0,47 мк
Электролитические конденсаторы C1 100 мкф * 6,3 в К50-6, импортные аналоги
C4 47 мкф * 16 в
Катушка индуктивности (дроссель) L1 680 мкГн унифицированный типа EC24, CECL или самодельный
Кварцевый резонатор ZQ1 20 МГц
USB-розетка XS1 типа USB-BF
Перемычка XT1 любая типа "джампер"
Для панели установки микроконтроллеров (МК)
ZIF-панель XS1 любая 40-ка контактная ZIF-панель
Резисторы R1 2 кОм МЛТ, МОН (мощностью от 0,125 Вт и выше), импортные аналоги
R2, R3, R4, R5, R6 10 кОм

Теперь немного о деталях и их назначении.

Зелёный светодиод HL1 светится, когда на программатор подано питание, а красный светодиод HL2 излучает в момент передачи данных между компьютером и программатором.

Для придания устройству универсальности и надёжности используется USB-розетка XS1 типа "B" (квадратная). В компьютере же используется USB-розетка типа "А". Поэтому перепутать гнёзда соединительного кабеля невозможно. Также такое решение способствует надёжности устройства. Если кабель придёт в негодность, то его легко заменить новым не прибегая к пайке и монтажным работам.

В качестве дросселя L1 на 680 мкГн лучше применить готовый (например, типов EC24 или CECL). Но если готовое изделие найти не удастся, то дроссель можно изготовить самостоятельно. Для этого нужно намотать 250 - 300 витков провода ПЭЛ-0,1 на сердечник из феррита от дросселя типа CW68. Стоит учесть, что благодаря наличию ШИМ с обратной связью, заботиться о точности номинала индуктивности не стоит.

Напряжение для высоковольтного программирования (Vpp) от +8,5 до 14 вольт создаётся ключевым стабилизатором. В него входят элементы VT1, VD1, L1, C4, R4, R10, R11. С 12 вывода PIC18F2550 на базу VT1 поступают импульсы ШИМ. Обратная связь осуществляется делителем R10, R11.

Чтобы защитить элементы схемы от обратного напряжения с линий программирования в случае использования USB-программатора в режиме внутрисхемного программирования ICSP (In-Circuit Serial Programming) применён диод VD2. VD2 - это диод Шоттки . Его стоит подобрать с падением напряжения на P-N переходе не более 0,45 вольт. Также диод VD2 защищает элементы от обратного напряжения, когда программатор применяется в режиме USB-UART преобразования и логического анализатора.

При использовании программатора исключительно для программирования микроконтроллеров в панели (без применения ICSP), то можно исключить диод VD2 полностью (так сделано у меня) и установить вместо него перемычку.

Компактность устройству придаёт универсальная ZIF-панель (Zero Insertion Force - с нулевым усилием установки).

Благодаря ей можно "зашить" МК практически в любом корпусе DIP.

На схеме "Панель установки микроконтроллера (МК)" указано, как необходимо устанавливать микроконтроллеры с разными корпусами в панель. При установке МК следует обращать внимание на то, чтобы микроконтроллер в панели позиционируется так, чтобы ключ на микросхеме был со стороны фиксирующего рычага ZIF-панели.

Вот так нужно устанавливать 18-ти выводные микроконтроллеры (PIC16F84A, PIC16F628A и др.).

А вот так 8-ми выводные микроконтроллеры (PIC12F675, PIC12F629 и др.).

Если есть нужда прошить микроконтроллер в корпусе для поверхностного монтажа (SOIC), то можно воспользоваться переходником или просто подпаять к микроконтроллеру 5 выводов, которые обычно требуются для программирования (Vpp, Clock, Data, Vcc, GND).

Готовый рисунок печатной платы со всеми изменениями вы найдёте по ссылке в конце статьи. Открыв файл в программе Sprint Layout 5.0 можно с помощью режима "Печать" не только распечатать слой с рисунком печатных проводников, но и просмотреть позиционирование элементов на печатной плате. Обратите внимание на изолированную перемычку, которая связывает 6 вывод DD1 и 21 вывод ZIF-панели. Печатать рисунок платы необходимо в зеркальном отображении .

Изготовить печатную плату можно методом ЛУТ, а также маркером для печатных плат , с помощью цапонлака (так делал я) или "карандашным" методом .

Вот рисунок позиционирования элементов на печатной плате (кликабельно).

При монтаже первым делом необходимо запаять перемычки из медного лужёного провода, затем установить низкопрофильные элементы (резисторы, конденсаторы, кварц, штыревой разъём ISCP), затем транзисторы и запрограммированный МК. Последним шагом будет установка ZIF-панели, USB-розетки и запайка провода в изоляции (перемычки).

"Прошивка" микроконтроллера PIC18F2550.

Файл "прошивки" - PK2V023200.hex необходимо записать в память МК PIC18F2550I-SP при помощи любого программатора, который поддерживает PIC микроконтроллеры (например, Extra-PIC). Я воспользовался JDM Programmator’ом JONIC PROG и программой WinPic800 .

Залить "прошивку" в МК PIC18F2550 можно и с помощью всё того же фирменного программатора PICkit2 или его новой версии PICkit3. Естественно, сделать это можно и самодельным PICkit-2 Lite, если кто-либо из друзей успел собрать его раньше вас:).

Также стоит знать, что "прошивка" микроконтроллера PIC18F2550-I/SP (файл PK2V023200.hex ) записывается при установке программы PICkit 2 Programmer в папку вместе с файлами самой программы. Примерный путь расположения файла PK2V023200.hex - «C:\Program Files (x86)\Microchip\PICkit 2 v2\PK2V023200.hex» . У тех, у кого на ПК установлена 32-битная версия Windows, путь расположения будет другим: «C:\Program Files\Microchip\PICkit 2 v2\PK2V023200.hex» .

Ну, а если разрешить проблему "курицы и яйца" не удалось предложенными способами, то можно купить уже готовый программатор PICkit3 на сайте AliExpress. Там он стоит гораздо дешевле. О том, как покупать детали и электронные наборы на AliExpress я писал .

Обновление "прошивки" программатора.

Прогресс не стоит на месте и время от времени компания Microchip выпускает обновления для своего ПО, в том числе и для программатора PICkit2, PICkit3. Естественно, и мы можем обновить управляющую программу своего самодельного PICkit-2 Lite. Для этого понадобится программа PICkit2 Programmer. Что это такое и как пользоваться - чуть позднее. А пока пару слов о том, что нужно сделать, чтобы обновить "прошивку".

Для обновления ПО программатора необходимо замкнуть перемычку XT1 на программаторе, когда он отключен от компьютера. Затем подключить программатор к ПК и запустить PICkit2 Programmer. При замкнутой XT1 активируется режим bootloader для загрузки новой версии прошивки. Затем в PICkit2 Programmer через меню "Tools" - "Download PICkit 2 Operation System" открываем заранее подготовленный hex-файл обновлённой прошивки. Далее произойдёт процесс обновления ПО программатора.

После обновления нужно отключить программатор от ПК и снять перемычку XT1. В обычном режиме перемычка разомкнута . Узнать версию ПО программатора можно через меню "Help" - "About" в программе PICkit2 Programmer.

Это всё по техническим моментам. А теперь о софте.

Работа с программатором. Программа PICkit2 Programmer.

Для работы с USB-программатором нам потребуется установить на компьютер программу PICkit2 Programmer. Это специальная программа обладает простым интерфейсом, легко устанавливается и не требует особой настройки. Стоит отметить, что работать с программатором можно и с помощью среды разработки MPLAB IDE, но для того, чтобы прошить/стереть/считать МК достаточно простой программы - PICkit2 Programmer. Рекомендую.

После установки программы PICkit2 Programmer подключаем к компьютеру собранный USB-программатор. При этом засветится зелёный светодиод ("питание"), а операционная система опознает устройство как "PICkit2 Microcontroller Programmer" и установит драйвера.

Запускаем программу PICkit2 Programmer. В окне программы должна отобразиться надпись.

Если программатор не подключен, то в окне программы отобразится страшная надпись и краткие инструкции "Что делать?" на английском.

Если же программатор подключить к компьютеру с установленным МК, то программа при запуске определить его и сообщит нам об этом в окне PICkit2 Programmer.

Поздравляю! Первый шаг сделан. А о том, как пользоваться программой PICkit2 Programmer, я рассказал в отдельной статье. Следующий шаг .

Необходимые файлы:

    Руководство пользователя PICkit2 (рус.) берём или .

Еще одним несложным, в плане изготовления, является COM программатор. При условии использования альтернативного режима COM порта Bitbang, отпадает необходимость в преобразовании интерфейса RS232 COM порта в SPI, необходимый для программирования. Остается только привести уровни сигналов COM порта (-12В, +12В) к необходимым (0, +5В). Это и делает
схема COM программатора для AVR микроконтроллеров:

Данная схема программатора достаточно распространена и известна как программатор Громова. Название пошло от автора программы Геннадия Громова, который и предложил такую схему.

Чтобы собрать программатор Громова нам нужно следующее:

Диоды КД522, КД510, 1N4148 или им подобные. Резисторы можно использовать любые, какие найдете. В качестве шлейфа можно использовать IDE шлейф. При подключении шлейфа, для более устойчивой работы программатора, каждый «сигнальный» провод должен чередоваться с «земляным» проводом. Это позволит уменьшить уровень помех наводимых в линиях и за счет этого увеличить длину программирующего провода. Длина шлейфа должна быть в пределах 50 см. Еще нужен разъем для подключения к программируемому устройству.
Для внутрисхемного программирования Atmel рекомендует стандартные разъемы:


Если Вы планируете серьезно заняться микроконтроллерами, сделайте разъемы стандартными. Для разового программирования устройства я рекомендую использовать на программаторе (такими разъемами к материнской плате подключаются кнопки и светодиоды корпуса компа — именно их я и взял) и штырьки PLS «папы» на плате. Это позволяет максимально упростить разводку платы устройства, так как штырьки для программатора устанавливаются в непосредственной близости возле ножек микроконтроллера. Ножки MOSI, MISO, SCK у микроконтроллеров AVR всегда расположены вместе, поэтому для них можно применить строенный разъем. Отдельно делаем подключение для «земли»-GND и «сброса»-Reset.

Собрать COM программатор не составит труда:

Я сознательно не даю печатной платы под этот программатор, так как схема проста и возня с разводкой и травлением платы просто себя не оправдывает.

Для того чтобы наш COM программатор заработал нужна , к которой мы подключим программатор и для микроконтроллера.

— Так как режим Bitbang нестандартный для COM порта компьютера, то возможны сбои в работе (хотя у меня такого не было). Особенно это касается ноутбуков. Как вариант решения этой проблемы можно рекомендовать «поиграться» настройками COM порта (скорость, биты данных, варианты управления потоком, величины буфера …).
— Отдельный разъем для «земли» желательно подключить первым, чтобы уравнять потенциалы «земли» программируемого устройства и компьютера. Для тех, кто не знает, если у Вас компьютер включен в обычную розетку, без заземляющего контакта, то в виду особенности фильтра блока питания компьютера, на корпусе компьютера всегда присутствует потенциал в 110В.

Заключение:

— COM программатор Громова простой и надежный. Я не перестал пользоваться им даже собрав USB программатор (если какой либо микроконтроллер перестает программироваться USB программатором я обязательно перепроверю его на программаторе Громова).
— Так как программатор Громова собран на пассивных элементах он не требует для себя питания. Мало того, из-за паразитного питания, микроконтроллер можно запрограммировать вообще не подключая к нему источника питания! Хотя так программировать я не рекомендую, но сам факт интересен.
— Для пользователей Algorithm Builder есть приятный бонус! Этот программатор можно использовать для внутрисхемной отладки кристалла (программный JTAG).

Любой более-менее интересующийся электроникой человек сегодня знает, что такое «прошивка». Многие из этой категории встречались с ситуацией «прошивка слетела». Самым неприятным подвидом ситуации является состояние «кирпич». Под катом немного теории и практики «раскирпичивания» с использованием устройства-героя обзора.

Я не занимаюсь профессионально ремонтом электроники и не пытаюсь заработать на этом денег. Но исследовательский зуд вкупе с минимальными познаниями в области электроники и информатики иногда толкает меня на залезание в потроха какому-нибудь очередному дивайсу (и как следствие, незапланированные покупки).

Предыстория.

Как-то в гостях у знакомого я наткнулся взглядом на валяющийся в куче хлама спутниковый тюнер, еще вполне себе современный.

Выяснилось, что аппарат неисправен со следующими симптомами: когда-то грузился со второго раза, потом стал грузиться с третьего, потом с пятого, потом с десятого, потом перестал совсем. В сервисе за ремонт заломили неадекватную сумму, в результате просто был куплен новый тюнер, а этот брошен в кучу хлама. На предложение купить его за символическую сумму владелец с радостью согласился, в результате я стал обладателем неисправного тюнера Skyway Light с практически полным комплектом - нашелся пульт, блок питания и даже выносной ИК-приемник.

Первое включение.

Как ни странно, но включился он у меня не с двадцатого раза, а всего лишь с третьего. Отсканировал каналы и начал показывать. Но при попытке запустить приложение Youtube повис. Десять следующих перезагрузок методом перетыкания питания ни к чему не привели. Прошлый владелец не обманул.

Подозрение первое. Питание.

В интернете полно отчетов по оживлению тюнеров методом восстановления питающих напряжений. Обычно хватает замены вспухших электролитических конденсаторов в «холодной» части блока питания. Но это явно обещало быть не моим случаем. Во-первых, блок питания выносной, замена его на однотипный от исправного тюнера не помогла. Во-вторых, никаких крупных электролитических конденсаторов на плате не нашлось, в основном мелкие сигнальные в аналоговых цепях.

Подозрение второе. Прошивка.

Обновить прошивку не удалось ни с флэш-драйва методом зажатой кнопки «вниз», ни через COM-порт с помощью программы Porter Express. В первом случае индикатор чтения на флэшке мигал несколько секунд, после чего наступала тишина. Во втором программы выдавала сообщение «ошибка записи» без какого-либо объяснения, что ее не устраивает. Так я подобрался к третьему подозрению.

Подозрение третье. Чип флэш-памяти.

Натолкнули на эту мысль сразу несколько фактов. Во-первых, в консоли загрузки, которая стала доступна после подключения по COM-порту, при старте вываливалось сообщение «CRC error». Во-вторых, при попытке снять конфигурацию тюнера при помощи Porter Express слитый файл получался каждый раз другим, не совпадающим в предыдущим при побайтовом сравнении.

Беглое изучение Aliexpress показало, что такую микросхему можно купить за небольшие деньги. Но вот тут обнаружилась главная проблема: просто купить флэшку мало. Ее нужно прошить. Либо на программаторе, либо прямо на плате. В моем случае это чип Spansion S29GL256P90TFCR2 - параллельная флэш-память в корпусе TSOP-56. Поиск такого программатора ни среди друзей-электронщиков, ни в веб-магазинах по адекватной цене не увенчались успехом. Остается единственный вариант - прошить флэшку прямо на плате после запаивания. И тут впервые мысленно была произнесена фраза, которая обычно на форумах электроники звучит как приговор: «поможет только JTAG».

Немного про JTAG.

Практически в каждой современной системе-на-чипе есть возможность отладки и тестирования. Чаще всего она реализована в виде последовательного интерфейса с сигналами ввода, вывода, тактирования, выбора и сброса, который и называют JTAG. Обычно эти выводы разведены на плате в виде пинов или контактных площадок. Проблема в том, что стандартизирован только электрический интерфейс. Команды для управления конкретным чипом индивидуальны, мало того, большинство производителей их не разглашают и выяснять их приходится методом реверсивного инжиниринга. Именно поэтому в паблике практически нет инструментов для работы с современными популярными чипсетами.

Заказ адаптера.

Гугление коммерческих продуктов, которые умеют работать с моим чипсетом ST40, привело меня на ресурс ejtag.ru, где обитает комьюнити по ремонту и находится небольшой интернет-магазин. Присмотрев для себя самый дешевый адаптер и убедившись, что он умеет работать с ST40, начал переговоры с жабой приступил к процессу покупки. Процесс отличается от того, к чему мы привыкли в популярных интернет-магазинах. Никаких пэйпэлов и диспутов. Регистрируемся, кладем товар в корзину, оформляем заказ. Через некоторое время приходит сообщение с номером WM-кошелька и суммой для оплаты. Оплачиваем, приходит подтверждение оплаты, через несколько дней - уведомление об отправке. Остается только ждать. Гарантия сделки - доброе имя продавца.

Получение, распаковка, регистрация.

Пластиковый пакет почты России, внутри обернутый пупыркой и положенный в антистатический пакет адаптер, кабель USB A male - Mini USB, шлейф с десятипиновой колодкой (будет виден на других фото, на момент съемки был подцеплен к тюнеру), переходник для прошивки последовательных флэшек самых популярных серий - 25-й, 93-й и в теории 24-й.

Для оценки размеров

Фото внутренностей

Внутри микроконтроллер с системой команд 8051 и микросхема буферов.


На скриншоте виден весь процесс покупки, включая запрос регистрационного кода после получения:

Заказ новой флэшки на Aliexpress.

Развернуто описывать не буду. Заказывал , шло почти два месяца, пришло в пластиковом блистере, который лежал в стандартном пакете.

Заказывал 2 штуки, на случай если одну убью при перепайке.

Перепайка флэшки.

Пайка мелких чипов многократно описана на Youtube. Залогом успеха здесь являются наличие паяльной станции с феном, хороший флюс, прямые руки. Вкратце: сдуваем старый чип, лудим площадки легкоплавким припоем, наносим флюс, дуем феном (с правильным потоком и температурой воздуха) до посадки чипа на место, проходим сверху обычным паяльником для надежности.

На фото видно, что получилось не очень. Ножки чуть сдвинулись, да и от вида неотмытого флюса некоторые ремонтники могут прижать руку к лицу. Но для личного пользования сойдет.

Прошивка.

Распиновка JTAG для моего тюнера есть на форуме магазина. Подпаиваемся к контактным площадкам на плате.

Все готово к прошивке.

Запускаем программу.

Выбираем тип процессора в списке. Нажимаем кнопку «Соединиться».

В списке пробегает куча служебной информации, кнопки «Считать» и «Записать» и «Стереть» становятся активными. Обычно рекомендуют прошить только загрузчик, а потом уже через него прошиться обычным образом с USB-флэшки. Но я залил полный дамп, 32 мегабайта - лень было возиться с распаковкой отдельного загрузчика. Прошивка заняла около получаса, результат на фото:

Резюме.

Одним из самых мощных отладочных инструментов в микроконтроллерной среде является JTAG — внутрисхемный отладчик .

Суть тут в чем — через JTAG адаптер микроконтроллер подключается напрямую к среде программирвания и отладки, например к AVR Studio . После чего микроконтроллер полностью подчиняется студии и дальше шагу не может ступить без ее разрешения. Доступна становится пошаговое выполнение кода, просмотр/изменение всех регистров, работа со всей периферией и все это в реальном микроконтроллере, а не в программной эмуляции. Можно ставить точки останова (breakpoints) на разные события — для ICE1 три штуки. В общем, сказка, а не инструмент.

К сожалению в AVR микроконтроллерах JTAG доступен далеко не везде, как правило контроллеры с числом ног меньше 40 и обьемом памяти меньше 16КБ такого удовольствия лишены (там, правда, часто бывает debugWire, но на коленке сделать его адаптер еще никому не удалось, а фирменный JTAG ICEII или AVRDragon стоят довольно больших денег). А поскольку у меня в ходу в основном Tiny2313, Mega8, Mega8535 и прочая мелочевка, то мне JTAG что собаке пятая нога — не поддерживается он в этих МК.

Тем не менее, поддашвись многочисленным просьбам, я сварганил этот агрегат и сейчас покажу вам как им пользоваться.
Велосипед изобретать я не стал и взял широко известный проект от scienceprog.com

Однако я не обломался развести плату и под FT232RL суть та же.


Теперь надо прошить контроллер. Вообще, по науке, сначала прошивается bootloader , потом из AVR Studio делается обновление прошивки JTAG ICE до последней версии. Но я нашел путь проще, на сайте pol-sem.narod.ru был обнаружен уже готовый HEX файл который просто надо залить в МК и все.

Поэтому цепляем к нашему адаптеру программатор, благо все штыри нужные (MISO, MOSI, GND, RST, SCK, Vcc ) есть. А то что они не в нужном порядке стандартного AVR ISP разьема, так это не беда — я временно распотрошил колодку своего программатора и одел отдельные пины как надо. Однократная же процедура, чего мучаться разводить еще и ISP разъем.

Заливаем прошивку.
Выставляем Fuse биты.

Тут надо быть внимательными, так как существует несколько нотаций FUSE — прямая (по даташиту, где 0 = ON, 1=OFF) и инверсная (1 = ON, 0 = OFF). В прямой нотации работает UNIPROF, в инверсной нотации работает PonyProg и USBASP _AVRDUDE_PROG.
Определить в какой нотации работает твой программатор очень просто. Дjстаточно подключиться к своему МК и нажать кнопку чтения Fuse битов и посмотреть на бит SPIEN если галка стоит — нотация инверсная . Потому как по дефолту SPIEN включен всегда (без него невозможно прошить МК через ISP внутрисхемно).

Прошиваются Fuse следующим образом:


Бит Прямая нотация (UniProf, Даташит) Инверсная нотация (PonyProg, AVR DUDE GUI)
OCDEN [v]
JTAGEN [v]
SPIEN [v]
CKOPT [v]
EESAVE [v]
BOOTSZ1 [v]
BOOTSZ0 [v]
BOOTRST [v]
BODLEVEL [v]
BODEN [v]
SUT1 [v]
SUT0 [v]
CKSEL3 [v]
CKSEL2 [v]
CKSEL1 [v]
CKSEL0 [v]

Если прошивать голый бутлоадер, то надо включить бит BOOTRST и подключившись через студию сделать обновление прошивки JTAG, залив через AVRProg файл upgrade.ebn (лежит он где то в каталоге AVR Studio). А после прошивки выключить BOOTRST.

Все, девайс готов к работе. Теперь осталось его только испытать в деле.

Работа с JTAG AVR ICE
Особо заморачиваться я не буду, так что покажу на простом примере мигания светодиодов.
Запускаем студию, создаем новый проект.
Выбираем язык программирования, пусть это будет Assembler.
Задаем имя проекта.

Include "m16def.inc" ; Используем ATMega16 LDI R16,0xFF ; Порт А на выход. OUT DDRA,R16 Main: SEI ; Разрешаем прерывания. SBI PORTA,0 ; Зажгли диод 0 SBI PORTA,1 ; Зажгли диод 1 SBI PORTA,2 ; Зажгли диод 2 NOP CBI PORTA,0 ; Погасили диод 0 CBI PORTA,1 ; Погасили диод 1 CBI PORTA,2 ; Погасили диод 2 NOP RJMP Main ; Зациклились

Вот так вот просто. Если ее скомпилить, прошить и запустить, то диоды будут моргать с бешеной частотой, так как никаких задержек не предусмотрено. А что же будет из под JTAG ?

Беру свою новоиспеченную отладочную плату на Mega16 , подключаю к порту А три светодиода.
Подключаю к плате JTAG адаптер — четыре провода интерфейса (TDO,TDI,TMS,TCK ) и два силовых Vcc на плюс и GND на землю — JTAG адптер запитан от целевой платы и все готово к работе.

Можно трассировать! Тыкаю по F11 — прога исполняется по одной команде, показывая стрелочкой где я нахожусь в данный момент. После каждого выполнения команды SBI — у меня на плате зажигается соответствующий светодиод. Круто, блин! Как в каком-нибудь только без глюков и все вживую! Пробежался дальше по тексту — после CBI диоды погасли, как и положено. Вот как это выглядит вживую:

ЫЫЫ!!! ШИМ!!! Ставлю прогу на паузу, меняю биты в OCR2 запускаю снова — коэффициент заполнения изменился. Хы. Ручное управление:)

Так что с JTAGом если хочешь получить по быстрому какую нибудь фиговину вроде генератора даже не надо прогу писать — взял и включил вручную что тебе нужно. Богат AVR периферией:)

Прошивка микроконтроллера через JTAG
JTAG ICE можно также использовать для прошивки микроконтроллера и установки FUSE битов. Для этого надо запустить AVR PROG (Tools — Program AVR — Connect…) и выбрать там JTAG ICE ну и COM порт, хотя обычно канает Auto.

Наигрался, зафотографировал для статьи, упаковал в красивый корпус. Даже не поленился и обложечку сфигачил. Очень уж мне игрушка понравилась.

Файлы к статье:

Вот так и развращаютя эмбеддеры. Сначала к JTAG пристрастятся, потом ради одного лишь JTAG прееходят на более мощный кристалл там, где хватит и Tiny, а дальше Си, Си++, потом.NET какой нибудь на виртуальной машине… И вот уже операционная система весом в несколько гигабайт и требующая гигазы ОЗУ ни у кого не вызывает шока и ужаса. А ведь это страшно, господа! Прогресс, мать его. Не развращайтесь благами цивилизации, будте аскетичны и разумны. И не забывайте об оптимизации как программной, так и аппаратной.

При разработке и отладке программ под микроконтроллеры, возникают вопросы, связанные с программированием и отладкой программы в реальной схеме. Если с программированием микроконтроллеров AVR особых проблем не возникает, поскольку существует множество схем для «заливки» прошивки в кристалл, одной из простейших таких схем является схема получившая название «пять проводов», то с отладкой программы такого богатого выбора не существует.

Для отладки программы возможно использования только двух вариантов – это программный симулятор и внутрисхемный JTAG эмулятор-программатор. Программный симулятор, как правило, не может учитывать всех особенностей работы схемы, таких как внешние воздействия, совместная работа с другими устройствами и прочее. С аппаратными программаторами-отладчиками JTAG появляется возможность пошаговой отладки программы напрямую в самом микроконтроллере установленном непосредственно в схему, просмотра и изменения всех регистров микроконтроллера, установка breakpoints и конечно же внутрисхемного программирования микроконтроллера. Но стоимость оригинального AVR JTAG ICE MkII выпускаемого Atmel колеблется в районе 300 евро, а его аналога AVRDRAGON выпускаемого серийно около 3000руб., что является очень дорогим для людей, занимающихся созданием устройств на микроконтроллерах AVR «для себя».
Но к счастью удалось создать клон, оригинального AVR JTAG ICE , который стоит существенно дешевле оригинала и позволяет проводить программирование и отладку микроконтроллеров AVR с интерфейсом JTAG.

Рис 1. Принципиальная электрическая схема клона AVR JTAG ICE

Принципиальная электрическая схема приведена на рис. 1. Основой данного JTAG служит микроконтроллер DD3 AVR ATMega16. Микросхема DD2 MAX232 выполняет роль преобразователя интерфейса RS232 в ТТЛ уровни UART. Микросхема DD1 предназначена для защиты входных и выходных цепей микроконтроллера DD3 и согласования напряжения логических уровней при использовании внешнего питания.

Питание JTAG может браться от цепей питания отлаживаемого устройства через четвертый контакт vTref XP3, а также может использоваться внешнее через разъем XP1 и ХР2. Внешнее напряжение может быть в диапазоне от 7 до 15В. При использовании внешнего источника питания, вывод vTref разъема XP3можно не подключать.
Светодиод HL2 отображает наличие питания, HL1 режим работы JTAG.

Подключение JTAG к отлаживаемому микроконтроллеру осуществляется через стандартный десяти выводной разъем. Схема подключения которого изображена на рис. 2.


Рис 2. Схема подключения AVR JTAG ICE к отлаживаемому устройству

Существует несколько вариантов BootLoader загрузчиков для прошивки JTAG, но на мой взгляд наиболее удачный вариант получился у Кротевич Виталия (Vit). Его загрузчик наиболее близко повторяет фирменный и позволяет обновлять микропрограмму JTAG непосредственно из AVRStudio без перезагрузки JTAG и входа в режим программирования через BootStart. В случае если не планируется производить обновление прошивки JTAG`a , то загрузчик можно не прошивать, а «зашить» только оригинальную прошивку от .

Чтобы «зашить» bootloader в JTAG можно воспользоваться программатором AVReal, PonyProg, STK200, «пять проводов», любо любым другим имеющимся в наличии и совместимым с AVR ISP. Подключение программатора производится к ISP разъему программирования ХР4. Файл прошивки JTAG_ICE.hex.

Пример программирования фьюзов показан на рисунке 3.


Рис 3. Установка фьюзов для AVR JTAG ICE

Пример работы AVR JTAG ICE показан на рисунке 4. В качестве примера произведено считывание сигнатуры ATMega128


Рис 4. Чтение сигнатуры микроконтроллера ATMega128 с помощью AVR JTAG ICE


Рис 5. Изображение верхнего слоя трассировки печатной платы, с нанесенными элементами


Рис 6. Изображение нижнего слоя трассировки печатной платы, с нанесенными элементами

Фотографии готового устройства:

P.S. Схема и трассировка печатной платы разработаны автором статьи, загрузчик использован Кротевич Виталия (ака Vit), прошивка от оригинальной AVRStudio.

При написании статьи использовались следующие источники:
1 http://onembedding.bialix.com/files/jtag_vit/
2. Официальное руководство пользователя AVR JTAG ICE JTAGuserguide.pdf

Скачать прошивку, файлы печатных плат вы можете ниже

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
DD1 ИС буфера, драйвера

CD74AC244

1 В блокнот
DD2 ИС RS-232 интерфейса

MAX232

1 ST232BD В блокнот
DD3 МК AVR 8-бит

ATmega16

1 ATmega16-16PI В блокнот
DA1 Линейный регулятор

LM78L05

1 В блокнот
VD1, VD2 Выпрямительный диод

SM4007PL

2 В блокнот
VD3 Стабилитрон

BZX55C5V1

1 SMBJ5.0A В блокнот
VD4, VD5 Диод Шоттки

SM5819PL

2 В блокнот
HL1, HL2 Светодиод КР-3216-2 2 В блокнот
C1, C2, C4-C6, C9-C13, C16 Конденсатор 0.1 мкФ 10 В блокнот
C3 1 В блокнот
C7 Электролитический конденсатор 470 мкФ 10 В 1 Танталовый В блокнот
C8 Конденсатор 1200 пФ 1 В блокнот
C14, C15 Конденсатор 22 пФ 2 В блокнот
R1 Резистор

36 кОм

1 В блокнот
R2 Резистор

150 кОм

1 В блокнот
R3-R6 Резистор

10 кОм

4 В блокнот
R4, R10 Резистор

4.7 кОм

2 В блокнот
R9, R11-R15 Резистор

200 Ом

7 В блокнот
R16 Резистор